Data Acquisition, Processing and Analysis for Distributed Decision Support

Broad Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Definition of Data

Stgnals and Images — A Few Examples
Characteristics of Signals

Characteristics of Images

Questions

Data Acquisition
Sources of Data
Analog and Digital Data
Hardware for Data Acquisition and Digitisation
Sampling and Digitisation
Representation of Digital Data
-- Signals, Images, Databases, Spreadsheets
Questions

Processing of Acquired Data
Obyectives of Data Processing
Methods of Data Processing

Varions Domains of Data Processing
Questions

Data Analysis

Objectives of Data Analysis

Concepts and Methods of Data Analysis
The Time Domain — Signals

The Space Domain — Images

The Frequency and Power Domain

The Correlation Domain

Data Analysis in Miscellaneous Domains
Fruits of Data Analysis

Interpretation of Analysed Data
Questions

Using Analysed Data for Decision Support
Concepts of Decision Support

Apnalysed Data as Inputs for Decision Support
Distributed Decision Support

Questions

The Full, Integrated Picture

Glossary of Terms

Chapter 4

Data Analysis

The analysis of data (either in the form of column vectors - “signal” - or in the form of
2-d data — “image”) and their interpretation form the core, important tasks in this
exercise. Unlike the pre-processing methods discussed in Chapter 3, the techniques of
data analysis and interpretation are closely related to the underlying physical processes
that generate the data that is analysed and interpreted. In this Chapter, we present a set of
data analysis methods that are predominantly used by us for NDE in our laboratories,
and those that are a part of the DESKPACK Software System (DSS). Most of these
methods are equally applicable in domains other than NDE, tempered of course, by the
appropriate domain knowledge.

While the pre-processing methods generally treat the data as a set of numbers, data
analysis and interpretation must take into account the underlying domain knowledge to
arrive at the right conclusions. Hence, after the pre-processing of the data, the domain
expert(s) must decide on the appropriate methods of data analysis to be employed, their
sequence, the formats in which results must be studied and their interpretation. This is
the subject matter of this Chapter. In this Chapter, we assume that the data has been
acquired in adequate number, and it has been pre-processed as per the suitable methods
described in Chapter 3, and that the data is ready for analysis.

The next Section (4.1) offers an insight into the various possible objectives of data
analysis. For these different objectives, Section 4.2 highlights the concepts and methods
involved. Analysis methods specific to Signals and Images in their respective native
domains are dealt with in Sections 4.3 and 4.4 respectively. Specific methods of analysis
in the Frequency & Power domains and those in the Correlation domains are described
in Sections 4.5 and 4.6 respectively. Analysis in domains other than time and frequency
are detailed in Section 4.7. The types of outcomes of these analyses are listed in Section
4.8, whereas Section 4.9 elucidates the methods in interpreting this analysed data /
results. The final Section, 4.10, presents a few Questions for further thought and
discussions.

Wherever appropriate, the computer code listing pertaining to a data analysis function is
given in this Monograph. Some analysis functions use very large data arrays. The code
listing is in the language ‘C’, which requires special allocation and de-allocation of
memory, for handling large array data, specifically in Personal Computers. Special
functions that perform memory allocation and de-allocation alone are sourced from the
book “Numerical Recipes in ‘C””. Many of the analysis functions listed here will not work
on Personal Computer based ‘C’ compilers, without these specialised memory allocation
and de-allocation functions.

While every code listing given here has been tested, readers are advised to check them
thoroughly using known, test data for bugs and errors, before using them particularly in
mission critical applications with unknown data.

The data analysis methods discussed in this Chapter should at best be taken as indicative
rather than comprehensive. In each of the methods described, the reader must
understand its underlying physical basis, identify the extra information that method

provides, the pre-requisites for using that method and if that method would solve his /
her problem at hand. The ability to choose the right data analysis method would evolve
with increasing experience in handling a wide variety of problems. The short
bibliography (and the references therein) given at the end of this Chapter (with special
reference to non-destructive evaluation) should serve as a starting point to analyse the
efficiencies of the various data analysis methods described herein. Pay particular attention
to the various case studies discussed in the bibliography, zis-a-vis the analysis methods
used. For a good overview of the DESKPACK Software System (DSS), on which this
Monograph is based, see http://deskpack.tripod.com/thesis/KBS-DSS-Thesis.pdf

This Chapter also includes a Glossary of Terms, in Appendix — I, commonly used in data
pre-processing and analysis.

4.1 Obyectives of Data Analysis

The two broad objectives of data analysis could be either data classification or prediction
of a certain data value. In data classification, a set of data samples (either a set of signals
or a set of images, or a set of features extracted from these signal/image data) are to be
classified into two or more classes, based on their characteristic properties. These
properties or features as they are normally called, might originate from either the time
domain representation of the signal or from the transformation of the signal to other
domains, say, frequency domain. The chosen feature set could also be a combination
computed from multiple domains, such as time, frequency, power, correlation, etc. We
shall see more on these in Sections 4.2 and 4.7.

If the objective is prediction, then a set of input data is fed to a system to predict a
physical value that may otherwise be difficult to measure directly. If no established,
analytical relationships exist between the input set and the physical value(s) that need to
be predicted, then one might still predict the value, rather accurately, by using an artificial
neural network (ANN), provided a number of samples (input-output value pairs) exist in
pairs for training the ANN. In order to accomplish that, this Chapter describes with
source code, the feed-forward, error back-propagation artificial neural network, a popular
variant of the multi-layered perceptron (MLP).

4.2 Concepts and Methods of Data Analysis

This Section describes the introductory general methods of data analysis — those issues
that are common to both signals and images.

While selecting a particular method or a set of methods (to be used in a particular
sequence) for data analysis, one must clearly keep in mind the objective — whether it is
for data classification or for data prediction.

If the objective is data classification, based on the physical basis of generation of the data
(the underlying principles of physics that led to the generation of this data), one must
estimate the domain in which the data can be separated well. At this stage, the physical
basis will also provide insight into the methods required to reduce noise, if present in the

data. The type and extent of noise present in the data will also have a major say in the
way the analysis methods are chosen.

For example, if two types of acoustic signals were being analysed to distinguish noise and
leak signatures, a good approach would be to look at the data in the frequency domain.
One would have broadband characteristics while the other will have unique, narrow band
signature features determined by the topology of the leak. In this case, frequency domain
analysis could be faster and effective.

As another example, if we consider a task to distinguish between ultrasonic signals from
a defective plane and from a rugged crack, one should look for single reflection signature
and signatures that arise from multiple reflections (leading to constructive and destructive
interferences). The autopower spectra have been found effective in such cases.

As a third example, if we wish to distinguish between two sets of nearly identical noisy
data (signals having poor signal-to-noise ratio), use of statistical methods or cluster
generation and analysis principles would be appropriate. These methods can be applied
by directly operating upon transformed data (raw data transformed from one domain to
another, say, from time domain to power domain), or by extracting features (or
properties) from the transformed data. Care must be taken while extracting features and
using them. More on these can be seen in Section 4.7.

The type of analysis method that will be effective can be identified through practice in
handling a number of cases.

4.3 The Time Domain - Signals

In this Section, we shall see the methods of analysis of signals (i.e., time vs. measured
physical value), in their native domain, which is Time. A number of important aspects
about the signal can be obtained from their native domain.

Quite a few branches of Nondestructive Evaluation use the native time domain itself to
obtain as much information as possible about the underlying physical process,
particulatly if the signal-to-noise ratio (SNR) of the data is very good. Acoustic Emission
Testing, Ultrasonic A-Scan and Eddy Current figure-of-eight curves are good examples
of signals that are analysed / interpreted in their native domain.

A number of time-domain properties can be extracted from a given signal, many of
which could be effective discriminators. In addition, it is easier to associate physical
processes with many of the time-domain properties. Some important time-domain
properties could be:

* First Highest Positive Peak Value - Max 1

* Second Highest Positive Peak Value - Max 2
* Third Highest Positive Peak Value - Max 3

* First Highest Negative Peak Value - Min 1

* Second Highest Negative Peak Value - Min 2
* Third Highest Negative Peak Value - Min 3

* Inter-peak Distance Between Max 1 and Max 2

* Inter-peak Distance Between Max 2 and Max 3

* Inter-peak Distance Between Min 1 and Min 2

* Inter-peak Distance Between Min 2 and Min 3

* First Peak's P-P Value

* Second Peak's P-P Value

* Third Peak's P-P Value

* Ratio of 1 to II P-P Values

* Ratio of II to 111 P-P Values

* Ratio of 1 to III P-P Values

* Number of Zero Crossings in the Signal

* Ratio of Inter-Positive-Peak Distances

* Ratio of Inter-Negative-Peak Distances

* Ratio of Inter-Positive-Peak (I-1I) Distance to the Record Length
* Ratio of Inter-Positive-Peak (II-I1T) Distance to the Record Length
* Ratio of Inter-Negative-Peak (I-II) Distance to the Record Length
* Ratio of Inter-Negative-Peak (II-III) Distance to the Record Length
* Location of First Maximum Positive Peak

* Location of Second Maximum Positive Peak

* Location of Third Maximum Positive Peak

* Location of First Maximum Negative Peak

* Location of Second Maximum Negative Peak

* Location of Third Maximum Negative Peak

* Rise-Time of the First Maximum Positive Peak

* Rise-Time of the Second Maximum Positive Peak

* Rise-Time of the Third Maximum Positive Peak

* Fall-Time of the First Maximum Positive Peak

* Fall-Time of the Second Maximum Positive Peak

* Fall-Time of the Third Maximum Positive Peak

* Width of the First Maximum Positive Peak Pulse

* Width of the Second Maximum Positive Peak Pulse

* Width of the Third Maximum Positive Peak Pulse

A tull list of such properties is shown in the Code Listing 4.15.

If the underlying physical process (ultrasonic, eddy-current, acoustic emission, etc.) is
well understood, all or at least most of the properties listed above can be understood
with a conceptual basis. This understanding would help in choosing the right set of

properties to data analysis, either data classification or data prediction.

4.4 The Space Domain - Images

In this Section, we shall review the concepts of analysing images in their native domain,
viz. in the X-Y space. Images obtained from Penetrant Testing and Magnetic Particle
Testing are good examples where the 2-d data is analysed in their native X-Y space

domain.

There are significant aspects that differentiate data (or a column vector signal) analysis in
its native time domain and the analysis of images in their native x-y domain (could be
viewed either as a time or space domain). These aspects can be listed briefly as follows:

. The analysis of an image by an human being and that of a machine
. Parallel versus serial processing of images by a machine
. Colour, Pseudo-colour, grey scale or black-and-white analysis

The first aspect (human being vs. a machine) is the most interesting of the three. This
aspect is accentuated by the fact that the human being can analyse the image in full
colour, in parallel (need not worry about pixel-level analysis), understand and make
decisions about the full picture even when it is some what incomplete and blurred (low
resolution). The way a human being stores the image is also very much different than
how a machine does. A human being “recognises” an image whereas a machine
“analyses” the image. On the other hand, a machine almost always does a pixel level
analysis and offers pixel level processed information. It again calls for the attention of the
human being to get the “full pictures” from the resulting processed data. The machine
never “understands” the image as a human being does, in spite of its “faster” data
processing capability.

The second aspect (parallel versus serial processing) is more algorithmic as it is academic.
Here again, the human being always analyses the image in a “parallel processing fashion”.
Whereas a machine can do both serial and parallel processing, depending upon the
algorithm and the hardware employed for analysis.

The third aspect has more to do with machine analysis - Colour, Pseudo-colour, grey
scale or black-and-white — all of which make things difficult both the machine and the
human being who writes the algorithm to interpret the processed data. Care must be
taken while interpreting data that is presented using different formats, while essentially
containing the same information.

As in the case of column vector signals, the underlying physical process that resulted in
the input image must be taken into account while interpreting the image. For example, it
would be worthwhile to note if the image that is analysed was captured as it is from a
physical process (e.g., explosion of a super nova, penetrant testing results), or was
assembled / synthesised based on a number of physical measurements (e.g., a cross-
section temperature profile of a room, represented in temperature calibrated pseudo-
colour).

Once these aspects are studied and a standard method of image representation, analysis
and interpretation is agreed upon, the procedures themselves are similar to those
presented in the native time domain described in the previous Section 4.3.

4.5 The Frequency and Power Domain

Next to the native domains time (for signals) and X-Y space (for images), the frequency
and power domains assume great importance in the analysis of data. The quantities
‘frequency’ and ‘power’ are directed related to the measurable and actionable properties
of the physical world. The methods for obtaining the frequency spectrum and the power
spectrum are remarkably similar for signals and images.

The most famous transform that takes a time-domain signal to the frequency domain is
the Fourier transform. The algorithm devised by Cooley and Tukey for this purpose is
the Fast Fourier transform. The following code listing, which can be found in any
standard textbook, shows a variant of this famous algorithm.

In the following code listing 4.1, the time-domain data having a length N, which needs to
be converted to frequency domain, resides in the vector ‘data’. At the end of the
transform the N points of the vector ‘data’ contain the Fourier transform in the order
[Re(0), Re(1),...,.Re(N/2),Im(N/2-1),...,Im(1)]. The value Re(n) represents the magnitude
of the frequency spectrum at the point ‘n’ (the point ‘n’ itself represents a unique
frequency value, determined by the sampling frequency of the original time record and its
record length). The value Im(m) represents the phase of the frequency spectrum at the
point ‘m’. Note that due to the nature of this Fast Fourier transform algorithm, the phase
values are stored in reverse sequence. This must be remembered while using the Code
Listing 4.1.

/* Implementation of the Module that finds the forward Fourier
Transform using FFT.

// Result is stored in working array.

// Real-valued, in-place, Cooley-Tukey radix-2 FFT Module

// Real input and output data in working array

// Length N = 2**M

// Decimation-in-time, cos/sin in innermost loop

// Output in order [Re(0), Re(l),...,Re(N/2),Im(N/2-1),...Im(1)]
*/

void findfftdata (float *data, int N)
{

int j;
int 1i;
int 1i1;
int 1i2;
int 1i3;
int 14;
int k;
int N1;
int N2;
int N4;
int M;
float *x;
float temp;
float E;
float A;
float cc;
float ss;
float tl1;
float t2;

vector (0,N) ;

X
Il

M = gettwospower (N) ;
for (i=0; i<N; i++)

(

{

J=1i+ 1;

x[j] = datali]l;

}

/* Digit reverse counter */

j :11

Nl =N - 1;

for (i=1; i< (N1+41),; i++)
{
if (i<3)

{
temp = x[J];

x[3] = x[i];
x[i] = temp;
k = N/2;

}
else if (i>=]j) k = N/2;

while (k<7)
{
J Jj - ki
k k/2;
}

j =3 + ki

/* Length two butterflies */
for (i=1; i<(N+1); i++)
{

temp = x[1];

x[i] = temp + x[i+1];
x[i+1l] = temp - x[i+1];
i++;

}

/*Other butterflies */

N2 = 1;

for (k=2; k< (M+1); k++)
{

N4 = N2;

N2 = 2*N4;

N1 = 2*N2;

E = 6. 2831853079586/N1

for (i=1; <(N+1); i++)
{
temp = x[1];
x[1] = temp + x[1+N2];
X [1+N2] = temp - x[1i+N2];
X[1+N4+N2] = -x[1+N4+N2];
A = E;

/* Note that in the first run, N4 = 1, so the next
statement, could cause some problem. */

for (j=1; J<N4; J++)
{

il = i+9;

i2 =1 - 3 + N2

i3 =1 + 3 + N2;

i4 =1 - j + N1

cc = cos(A);

sSs = sin(A);

A=A+ E;

tl x[1i3]*cc + x[14]*ss;
t2 = x[13]*ss - x[i4]*cc;

x[14] = x[12] - t2;
x[13] = -x[12] - t2;
x[12] = x[11l] - t1;
x[11] = x[11] + t1;
}
i =1+ (N1-1);
}
}
for (i=0; i<N; i++)
{
J=1i+ 1;
datal[i]l = x[j];
}

free vector(x,0,N);

}

Code Listing 4.1 The Fourier Transform

Figure 4.1 shows a time domain signal that has a sine wave superposed with random
noise.

i DESKPALK Software System - sinerand.dat - 8 April 2004, Thursd: - |EI|5|
1.24 Amplitude™Arb. Units <KX= x> | <Y|Y =

1024

-1.24 Time —>

Figure 4.1 Sinusoidal wave superposed with random noise

If we use the code listing 4.1 and take a Fourier transform, the resultant data is shown in
Figure 4.2.

: DESKPACK Software System - sinerand.dat - 28 June 2004, Monda:

-609.91 Frequency Magnitude [0 -> 511]; Phase [1023 ->512] —>

Figure 4.2 Fourier transform of Figure 4.1

In Figure 4.2, note that the first 512 points (0 to 511) represent the Frequency Magnitude
values and the next 512 points (1023 to 512) represent the Frequency Phase in reverse

order.

If we apply the inverse Fourier transform as shown in Code listing 4.2 to the Figure 4.2,

we will get the original time domain signal as shown in Figure 4.1.

/* Implementation of the Module that finds the Inverse Fourier
Transform.

// Real-valued, in-place, split-radix IFFT Module

// Hermitian Symmetric input and Real output

// Length N = 2**M

// Decimation-in-frequency, cos/sin in second loop

// Input order [Re(0), Re(l),...,Re(N/2),Im(N/2-1),...Im(1)]

void findifftdata (float *data, int N)

{

float *x, xt, tl, t2, t3, t4, t5, rl;

int M, N1, N2, N4, N8, is, id, k, 3, 41, 410, i1, i2, i3, i4, 1i5,
i7, 1i8;

double a, a3, e, ccl, ssl, cc3, ss3;

vector (0,N) ;

X
Il

M = gettwospower (N) ;

for (i=0; i<N; i++)
{
3 =1+ 1;
x[3] = datalil;
}

/* Implementation from the Paper Starts Here */

ie,

/* L Shaped Butterflies */

N2
for

(k
{
is
id
N2
N4
N8
e
do

a
fo

2*N;
=1; k<=M-1; k++)

= 0;
= N2;
N2/2;
N2/4;
= N4/2;
= 6.283185307179586/N2;
{
for (i=is; 1<=N-1; i= i+id)
{
il =1 + 1;
i2 = il + N4;
i3 = 12 + N4;
i4 = i3 + N4;

tl = x[1i1] - x[i3];
x[11] = x[11] + x[13]:
x[12] = 2.0*x[12];
x[13] = t1 - 2.0*x[14];
x[14] = tl + 2.0*x[14];
if(N4!=1)
{
il = i1 + NS8;
i2 = 12 + NS8;
i3 = i3 + N8§;
i4 = i4 + N8;
tl = (x[i2] - x[11])/sqrt(2.0);
t2 = (x[14] + x[i3])/sqrt(2.0);
x[11] x[11] + x[1i2];
x[12] x[14] - x[13]:
x[13] 2.0%(-1.0*t2 - tl1);
x[14] = 2.0*(-1.0*t2 + t1);
}

}
is = 2*id - N2;
id = 4*id;
} while (is < N-1);
r(j=2; J<=N8; j++)
{
a3 = 3.0%a;

ccl = cos(a);
ssl = sin(a);
cc3 = cos(a3);
ss3 = sin(a3):;
a = j*e;
is = 0;
id = 2*N2;
do {
for (i=is; 1<=N-1; i = 1 + 1id)

i2 = i1l + N4;
13 = 12 + N4;
i4 = i3 + N4;

}_l
o
Il
-
ul
+
Z
N

i8 = 17 + N4;
tl = x[1il] - x[i6];
x[11] = x[11] + x[16];
t2 = x[15] - x[i2]:
x[15] = x[12] + x[i15];
t3 = x[1i8] + x[i3];
x[i6] = x[18] - x[i3];
td = x[14] + x[17];
x[12] = x[14] - x[17]:
th = tl - t4;
tl tl + t4;
td = t2 - t3;
t2 = t2 + t3;
x[13] = tbh*ccl + td*ssl;
x[17] = =-1.0*td*ccl + t5*ssl;
x[14] = tl*cc3 - t2*ss3;
x[18] = t2*cc3 + tl*ss3;
}

is = 2*id - N2;

id = 4*id;

} while(is < N-1);
}

}
/* Length two butterflies */
is = 1;
id = 4;
do
{
for (10=1is; 10<=N; 10 = 10 + 1id)
{
il = 10 + 1;
rl = x[10];
x[10] = rl1l + x[il];
x[11] rl - x[il];
}
is = 2*id - 1;
id = 4*id;
} while(is < N);

/* Digit Reverse Counter */

1; i<=N1l; i++)

for (i=1; i<=N; i++)

free vector(x,0,N);

}

Code Listing 4.2 The Inverse Fourier Transform

On closer scrutiny, one would find that Figure 4.2 (the Fourier transform of Figure 4.1)
is technically correct, but offers little insight into the frequency spectrum of the input
signal, as a sum total of the frequency magnitude and phase. A nicer way to know the
frequency spectrum would be to know the extent of contribution, or power, of each
frequency component. The autopower spectrum offers this information.

If the n™ frequency magnitude and phase component in a Fourier transform is
represented as F(n) = x(n) + iy(n), where <’ and ‘y’ are the magnitude and phase, then
the n™ component of the autopower is given as

APW(n) = [x(n) + iy(n)] [x(n) + iy(n)]* Equation 4.1
Where [x(n) + iy(n)]* is the complex conjugate of [x(n) + iy(n)].

This operation is listed in the form of source code in the following code listing 4.3.

/* Function to find the Auto-Power of an array */
void autopwrdata (float *data, int rlength)

{

int i,73,k;

k = rlength/2;

findfftdata (data, rlength),
data[0] = pow(datal[0],4.0);
datalk] pow (datalk],4.0);
for(i=1; i<k; 1i++)

{

3 = rlength - i;

data[i] = datali]l*datal[i] + datal[jl*dataljl:

datal[j] = 0.0;

}

’

Code Listing 4.3 The Auto-Power Spectrum

So, how does an autopower look ? Figure 4.3 shows the autopower of the sinusoidal
superposed with noise signal (Figure 4.1).

: DESKPACK Software System - sinerandapw.dat - 28 June 2l]l]4,-:_ - |EI|5|
260061 FéwertArh. Units KX = i = Y}I
64
1]
0 Frequency —>

Figure 4.3 AutoPower of the Figure 4.1

If we study the auto power shown in Figure 4.3 closely, we observe the following points:

. There is a single peak corresponding to the single sinusoidal wave
. The peak has a certain width

. The magnitude and phase information are now fused

. All the Power values (for each frequency component) are positive

In view of observation 3 mentioned above, we cannot get back the time domain signal
from the autopower spectrum.

Also note that the spectrum is called “autopower” because the Fourier transform of the
same signal is complex conjugate multiplied to get the result (See Equation 4.1).

If we use the Fourier transform of two different signals to obtain the complex conjugate
result, as shown in Equation 4.2, then the resulting waveform is called Cross Power.

CPW(n) = [x(n) + iy(n)] [a(n) + ib(n)]* Equation 4.2

Equation 4.2 shows the complex conjugate multiplication of the Fourier transform of
two different input data, one represented by x(n) + iy(n) and the other a(n) + ib(n). The
Cross Power Spectrum highlights the common power features of each of the input
waveforms. Unlike the auto-power spectrum, the cross-power spectrum could be either
positive or negative, for a given frequency component. The following Code Listing 4.4
shows the method to obtain the Cross Power of two input waveforms.

/* Implementation to find the cross-power between Test Data and the
//Ref. Data, both IN ARRAYS. Result is stored in the TEST ARRAY,
'tesdata' */

void crospwrdata (float *refdata, float *tesdata, int rlength)
{

float *cpwrdata;

int i,73,k;

k = rlength/2;

cpwrdata = vector (0,rlength-1);
findfftdata (refdata,rlength);
findfftdata (tesdata, rlength);
cpwrdata[0] = pow(refdatal[0],2.0) + pow(tesdatalO],
cpwrdatal[k] = pow(refdatalk],2.0) + pow(tesdatalk],
for (i=1; i<k; 1i++)
{
3 = rlength - i;
cpwrdata [i] refdatal[i] *tesdata[i] + refdatal[j]l*tesdatal]];
cpwrdata[j] = refdatal[j]*tesdatal[i] - refdatal[i]*tesdataljl;
}
for (i=0; i<rlength; i++)
{
tesdatal[i] = cpwrdatalil;
}
free vector (cpwrdata, 0, rlength-1);

}

Code Listing 4.4 The Cross-Power Spectrum

Figure 4.4 shows the cross-power spectrum of a sine wave and a random wave.

: DESKPACK Software System - rand.dat - 28 June 2004, Monday |5 - |EI|5|
4326.64Cross-PowerArb. Units <X X = X | <y = Y3 |

1024

-1252.06 Frequency —>

Figure 4.4 Cross Power Spectrum between a Sine and a Random Waveform

Some times, we are interested in finding only the magnitude of the frequency spectrum
(magnitude of each frequency component) or the phase of the frequency spectrum
(phase of each frequency component). The following two Code Listings (4.5 and 4.6)
show the method used to obtain this information for a given signal input.

/* Function to find ONLY the Frequency Magnitude Values of an array
*/

void findfregmagdata (float *data, int rlength)

{

int 1i,73,k;

k = rlength/2;

findfftdata (data, rlength);
data[0] = pow(data[0],4.0);
for (i=1; i<k; 1i++)

{

3 = rlength - i;

datal[j] = 0.0;

}

Code Listing 4.5 To find the Magnitude of the Frequency Spectrum

/* Function to find ONLY the Frequency Phase Values of an array */
void findfregphasedata (float *data, int rlength)

{

int 1i,73,k;

k = rlength/2;

findfftdata (data, rlength);
data[0] = pow(datalk],4.0);
for(i=1; i<k; 1i++)

{

j = rlength - 1i;

datal[i] = dataljl;

datalj] 0.0;

}

Code Listing 4.6 To find the Phase of the Frequency Spectrum

Figures 4.5 and 4.6 show the magnitude only and phase only values of a given input
signal. In this case, the input signal is the sinusoidal signal superposed with random noise
(same as Figure 4.1).

i DESKPACK Software System - sinerandmag.dat - 28 June 2004, Me o] [
9.28 Magnitude*Arb. Units <KX= x> | <y = Y|

il | 2
0
|
-10.72 Frequency —»
Figure 4.5 Magnitude of the Frequency Spectrum of Input shown in Figure 4.1
i DESKPACK Software System - sinerandphase.dat - 28 June 2004, & o] [

9.12 | - hed

b2

-509.91 Frequency —»

Figure 4.6 Phase of the Frequency Spectrum of Input shown in Figure 4.1

It would be worthwhile to compare the Figures 4.5 and 4.6 with the combined figure
shown in Figure 4.2. Figure 4.2 is a combination of Figures 4.5 and 4.6 (the latter being
combined in the reverse order).

Such separate values (separate Magnitude and Phase values) might be useful in generating
Clusters to separate data having poor signal-to-noise ratio.

Another type of input that could be useful in cluster generation is the magnitude of the
cross power spectrum. In an Argand diagram sense, the magnitude of a cross power
value say [k(n) + ij(n)], can be represented as

Mag(n) = {[k(m)]* +j(n)’}" Equation 4.3

The following code (Code Listing 4.7) shows this approach to get the magnitude values
of a cross-power spectrum.

/* Function to find the Magnitude of a Cross-Power Spectrum given as
data - Begins Here */
void findcpwrtomagdata (float *data, int rlength)

{
int 1i,73,k;
float temp;

k = rlength/2;
for (i=0; i<k; 1i++)
{

3 = (rlength - 1) - 1i;
temp = datal[i]*datali] + datal[jl*datalj]l;
data[i] = pow(temp, 0.5);
}
}

/* Function to find the Magnitude of a Cross-Power Spectrum given as
data - Ends Here */

Code Listing 4.7 To find the Magnitude from an input Cross-Power Data

For a typical cross-power spectrum, say as shown in Figure 4.4, its magnitude spectrum
as computed by the Code Listing 4.7 is shown in Figure 4.7.

i DESKPACK Software System - sinerandcpwrmag.dat - 28 June 200
4326.6Magnitude”Arb. Units <X [X = _&I <y =
64
0
0 Frequency —»
Figure 4.7 Magnitude values of a Cross Power Data (Cross Power between a sine

wave and a random wave)

Question: Compare Figures 4.3 and 4.7. Write down your observations.

If we wish to find an estimate of the variations present in a frequency spectrtum how do
we go about? How to know if the frequency spectrum is constant or if it has
undulations? If undulations are present in a frequency spectrum how to quantify these?
These are some of the issues addressed by the quantity known as Cepstrum. One can
think of this as a spectrtum of a spectrum. The term spectrum has degenerated to
Cepstrum, whose frequency equivalent is called Quefrency. The following Code Listing
4.8 shows the method to obtain the Cepstrum.

/* Function to find the Cepstrum of a Waveform in an Array - Begins
Here*/

void findcepsdata (float *data, int rlength)

{

autopwrdata (data, rlength) ;

findlogdata (data, rlength/2);

multsigscalardata (data,rlength/2,0.5);

autopwrdata (data, rlength/2);

}

/* Function to find the Cepstrum of a Waveform in an Array - Ends
Here */

Code Listing 4.8 To find the Cepstrum of a Signal Data

4.6 The Correlation Domain

Relationships between points within a signal or image, either in time or space, can be
aggregated to give very useful information. Such information in time gives insight into
the behaviour of the data over time, e.g., its periodicity. If space is used as the basis to
obtain correlation, then the resulting information offers insight into the self-similarity of
the data. Such aggregate correlation relationships can be obtained for the same data set
(auto-correlation) represented by R or for two different data sets (cross-correlation)
represented by R .

Code Listing 4.9 shows the procedure to obtain the auto-correlation function for a
column vector of data.

/* Implementation of the module that finds the auto-corr. of a signal
IN AN ARRAY */

void autocordata (float *data, int rlength)

{

float *rxx;

int m;

int 1i;

rxx = vector (0,rlength-1);

for (m=0; m<rlength; m++)

.0;
0; i<(rlength-m); i++)

3
Il —
Il
o

xx[m] += data[m+i]*datali];

for (m=0; m<rlength; m++)
{
data[m] = rxx[m];
}

free vector (rxx,0,rlength-1);

}

Code Listing 4.9 The auto-correlation function

The following Figure 4.8 shows the auto-correlation function plot of the input signal data
shown in Figure 4.1.

i

i DESKPACK Software System - sinerandautocorr.dat - 1 July 2004,
528.03 Auto-Corr Amplitude*Arb. Units <X |[X = X>| <Y|Y =

-475.23 Time Delay —>

Figure 4.8 Auto-Correlation Plot of a Sine + Random Input (Figure 4.1)

Figure 4.9 below shows the same auto-correlation function plot for a completely random
signal. The input random signal is shown in Figure 4.10.

i DESKPACK Software System - randautocorr.dak - 1 July 2004,
80.82 Auto-Corr Amplitude*Arb. Units <X |[X = X>| <Y|Y =

1024

-6.19 Time Delay —>

Figure 4.9 Auto-Correlation Plot of a Random Input Signal

: DESKPALK Software System - rand.dat - 1 July 2004, Thursday - 10| x|
0.47 Amplitude“Arb. Units XX = x> | <yl = Y|
-

_I"E
{

-0.52 Time —>

Figure 410 A Typical Random Signal

It would be worthwhile comparing the two figures, Figure 4.8 and Figure 4.9. The x-axis
of both the figures represent time-delay, while y-axis represent the amplitude of the auto-
correlation function as time delay increases. The first point (x-axis origin) represents the
auto-correlation function value when there is no time delay (or, zero time delay). Also
note that these figures show just one half of the auto-correlation function (either the
positive or negative delay portions). The negative-x-axis will show the other half.

Figure 4.8 shows periodicity even as the time-delay increases. This is natural since the
input (shown in Figure 4.1) sinusoidal signal is basically periodic, even though corrupted
by a small amount of random noise. In a sine wave as we travel from the left to the right

(i.e., as we change the time delay) its periodicity is generic, which is also reflected in the
autocorrelation function.

This is not the case in a random signal. In a truly random signal, there will be no
periodicity and hence if we wish to correlate one portion of the random signal with
another portion (of the same random signal, since this is auto-correlation function), we
would discover that there is no correlation indeed. This is what is represented by the
auto-correlation function of a random signal, as shown in Figure 4.9. The initial peak
(x=0; no time delay) represents the correlation without any delay. The moment we
introduce a delay (x>1; secking correlation between one portion of the signal with
another portion of the signal), the value of the correlation function comes down
drastically.

There are some other interesting observations about the auto-correlation functions:

. They are even — ie., R (n) = R (-n), where ‘n’ represents positive delay,
while “-n’ represents equal negative delay

. The auto-correlation function has the highest value when the time delay is
zero, i.e., when there is no time delay or when n = 0; R_(0) >= R (n), where
n# 0.

. The value R (0) is related to the root means square value of the data record

The next Code Listing 4.10 shows the procedure to obtain the Cross-Correlation
function, obtained using two different data records.

/* Implementation to find the cross-correlation between Test Data and
the

//Ref. Data, both IN FILES. Result is stored in the TEST FILE */

voild croscordata(float *refdata, float *tesdata, int N)

{

float *rxy;

int i, m;

rxy = vector (0,N-1);

for (m=0; m<N; m++)

{

rxy[m] = 0.0;

for (1i=0; i< (N-m); 1i++)
{
rxy[m] += tesdata[m+i]*refdatali];
}

}

for (m=0; m<N; m++)
{
tesdata[m] = rxy[m];
}

free vector(rxy,0,N-1);

}

Code Listing 4.10 The cross-correlation function

Figure 4.11 shows the cross-correlation plot for two different input signals, one a
sinusoidal signal corrupted with noise (Figure 4.1) and the other a random noise signal
(Figure 4.10).

: DESKPACEK Software System - sinerand-rand-crosscorr.dak - i_'«
13.17 Amplitude™Arb. Units <KX = x> | <Y|Y =
1024
0
-13.12 Sinet+Random with Random Cross Correlation [Time Delay] —>

Figure 4.11 Cross Correlation between a Sine+Random Signal and a Random Signal

A comparison between Figure 4.8 (auto-correlation function of a Sine+Random signal)
and 4.11 (cross-correlation function between a Sine+Random Signal and a Random
Signal) provides a good insight into the differences between the auto- and cross-
correlation functions.

Some of these are listed below:

. In Figure 4.8, even though the input signal (figure 4.1) is a Sine+Random
signal, when the auto-correlation function is found, the randomness has
reduced in the resultant signal shown in Figure 4.8.

. In Figure 4.11, since the cross-correlation function highlights a commonality
among input signals (with respect to time or delay), the random nature which
is predominant in one of the inputs (Figure 4.10), shows up in the resultant
cross-correlation function in Figure 4.11.

. Figure 4.8 (auto-correlation function) has only positive values; Figure 4.11
(cross-correlation function) has both positive and negative values, depending
upon the time delay

. Even though this is not shown, the cross-correlation function need not be an
even function like the auto-correlation function. That is, for an auto-
correlation function R (n) = R (-n); for a cross-correlation function, it could
be R, (n) # R (-n).

. Also, note that the highest value that appears in the cross-correlation plot
need not be when the time-delay is zero. It can occur anywhere depending
upon the input signals. That is R (n) >= R_(0), where ‘n’ is any time delay

value.

The last property listed above is interesting; this means that if the same type of activity
occurs in the two input signal records, but at different locations within the records (i.e., if
the same activity occurs with a certain time delay), this difference is highlighted by the
cross-correlation function. This property is used in some ultrasonic measurements to
measure liquid flow speed or in assessing the wave velocity.

The following Code Listing 4.11 shows the method to obtain a special pattern called the
Demodulated Auto-Correlogram pattern which is a derivative of the auto-correlation
function and is useful in discriminating / classifying data.

/* Function to find the DMAC Pattern of a given data in an array */
void finddmacdata (float *data, int rlength)

{

autocordata (data, rlength) ;

powerdata (data, rlength,2.0);

findlogdata (data, rlength);

}

Code Listing 4.11 To find the Demodulated Auto-Correlogram (DMAC) Pattern

The DMAC pattern generation can be explained as follows: It involves finding the auto-
correlation function of a given data, and taking its square and finally the log of the
squared function. The logarithmic operation is a crucial step in this method. It is well
known that the logarithm is directly related to the amount of information present. The
log function, in this case, brings out not merely the information lucidly, but also helps
unfold the various convolution factors, which results while the signal travels from one
medium to the other, characterised by their individual transfer functions. It would be
worthwhile to note that, in simple terms, the log function converts the multiplication (in
signal terms, convolution) terms into additive ones.

The outline of the resulting DMAC pattern forms an envelope, which is distinct and
unique for a given class of signal. The envelope of the pattern is extracted in a normal
way by successive maximum technique. This method is a type of digital low pass filtering,
where the maximum among a five-value window is set as the value, and the window is
moved successively from one end of the function to the other end. Since the
autocorrelation function is an even function ie., x(t) = x(-t), it is enough to find the
envelope till N/2, where N is the total number of points in the auto-correlation function,
and the rest can be traced by reflection.

The success of this powerful technique lies in the ability to interpret the resulting
envelope pattern. Experiments with natural and artificial defects signals and noise signals
indicate that the patterns are indeed different for these signals. These patterns can be
characterised, thereby quantifying this approach, by the following parameters:

. The width of the pattern

. The shape of the covering envelope of the pattern (ie., the rate and the mode
of fall) (curvature)

J The number of lobes present in the pattern

. Lobe periodicity
. Width of the central lobe
. No.of lobelets (tiny lobes) present in the central lobe, etc.

Figures 4.12 and 4.13 show the DMAC patterns for Sinet+Random and Random signal
inputs, respectively.

: DESKPACK Software System - sinerand-dmac.dat - 1 July 2l]l]4,-‘5'
12.53 DMAC Amplitude™Arb. Units K XK= o | <Y|Y =
024
0
-8.17 Time Delay [DMAC of Sine+Random] —>
Figure 412~ DMAC Pattern for a Sine+Random Input Signal (Figure 4.1)
: DESKPACK Software System - rand-dmac.dat - 1 July 2004, Thurs = |EI|5|
8.78 DMAC Amplitude*Arb. Units KX = % | <v v = Y|

-12.58 Time Delay [DMAC of Random Signal Input] —>

Figure 4.13 DMAC Pattern for a Random Input Signal

Note that even though amplitude-wise there is not much difference between Figures 4.12
and 4.13, the patterns are entirely different. By studying the DMAC properties listed
above, it is possible to qualitatively classify data.

The DMAC patterns of real life signals, could be anywhere in between. For example,
Figure 4.14 shows the DMAC pattern for an ultrasonic data record, obtained from
bubbles present in a column of distilled water.

i DESKPALK Software System - F39c0027.dat - 1 July 2004, Thursd: - |EI|5|
a.7 DMAC Amplitude™Arb. Units KX = b3 I <Y|Y =

683

-33.23 Time Delay [DMAC of Bubble Ultrasonic Data] —>

Figure 4.14 ~ DMAC Pattern of Ultrasonic reflection data from Bubbles in Distilled
Water

4.7 Data Analysis in Miscellaneous Domains

Apart from the native (time & space), frequency and correlation domains, there are other
equally important domains of analysis. Some of them are the Haar domain, Hilbert
transform domain, eigenspace domain, feature domain, etc.

/* Implementation of the module that finds the Haar Transform of a
signal IN AN ARRAY */

void haardata (float *data, int rlength)

{

float *s, *a;

int m;

int 1i;

int t;

s = vector (0, rlength-1);
a = vector (0,rlength-1);

t = rlength;

for (i=0; i<rlength; i++)

{
s[i1i] = datal[i]:;
}

while (t>1)
{
m= t/2;
for (i=0; i<m; i++)
{
alil] = (s[2*i] + s[2*1 + 11)/2.0;
a[m+i] = (s[2*1] - s[2*1 + 11)/2.0;
}
for (i=0; i<m; i++)
{
s[i] alil;
s[m+i] = al[m+i];
}
t = t/21
}

for (i=0; i<rlength; i++)
{
data[i] = s[i];
}

free vector(s,0,rlength-1);
free vector(a,0,rlength-1);

}

Code Listing 4.12 The Haar Transform

Figure 4.15 and Figure 4.17 show a typical Sine wave and a typical ultrasonic pulse
waveform respectively. Their respective Haar transforms are shown in Figures 4.16 and
4.18 respectively.

[} A 0 are e e da A (04 da 0 A
1 Amplitude*Arb. Units <X X = x> | <yl =

LAY

-0.99 Time —>

Figure 4.15 Typical Sine Wave

% DESKPACEK Software System - sinehaar_dat - 4 July 2004, Sunday 12 Hours 41 Minutes._.
0.63 Amplitude*Arb. Units XX = x> | <y fy = >

1024

027 Time —>

Figure 4.16 Haar Transform of the Sine wave shown in Figure 4.15

2 DESKPACK Software System - pulse dat - 4 July 2004, Sunday 12 Hours 43 Minutes 1 ___ M [=| 3|
0.99 Amplitude*arb. Units XK [X = x> | <yl = Y>

-0.99 Time —>

Figure 4.17 Typical Pulse waveform

% DESKPACK Software System - pulsehaar.dat - 4 July 2004, Sunday 12 Hours 43 Minute... 9 [=] I
0.63 Amplitude”Arb. Units KK= x> | <Y|Y =

-0.29 Time —>»

Figure 4.18 Haar Transform of a typical Pulse shown in Figure 4.17

The Hilbert transform is another important transform that represents the convolution of
the input data with the function 1/mx. It can be obtained by finding the Fourier
transform of the given column data vector, resetting the phase values to zero and then
taking the inverse Fourier transform as shown in the Code Listing 4.13.

/* Function to find the Hilbert Transform of an array */
void findhilbertdata (float *data, int rlength)

{

int 1,3

j = (rlength/2) + 1;

findfftdata(data,rlength);
for (i=j; i<rlength; i++)

{

datal[i] = 0.0;

}
findifftdata(data,rlength);
}

Code Listing 4.13 The Hilbert Transform

Figures 4.19 and 4.20 show the Hilbert transforms of a typical sine wave (Figure 4.15)
and a typical ultrasonic pulse (Figure 4.17) respectively.

DESKPACK Software System - sinehilbert.dat - 4 July 2004, Sunday 12 Hours 46 Minut... !EI x|
0.01 Amplitude*Arb. Units <X X = x> | <y fy =
0 \/VV\/V\/ \

-0.01 Time —»

Figure 4.19 Hilbert Transform of a typical Sine wave shown in Figure 4.15

% DESKPACK Software System - pulsehilbert_dat - 4 Julp 2004, Sunday 12 Hours 47 Minu. .
0.08 Amplitude”Arb. Units <X IX = x> | <Y|Y =
1024
0
-0.08 Time —>

Figure 4.20 Hilbert Transform of a typical Pulse waveform shown in Figure 4.17

The split-spectrum processing has been widely used in reducing noise in ultrasonic
waveforms that have poor signal-to-noise ratio (SNR), such as those obtained while
testing weld overlays.

The principle behind this technique is to slice (or split) the input waveform’s Fourier
transform using a number of Gaussian windows, and then take the inverse Fourier
transform of the resultant Gaussian slices. If 10 numbers of Gaussian windows are used
for splitting the Fourier transform, we would then obtain 10 time-domain signals, each
pertaining to one slicing Gaussian window. These 10 resultant time domain signals are
then subjected to two noise-reducing algorithms namely minimisation and polarity

thresholding, to obtain a single, noise-reduced final waveform, which is much more
easier to interpret because of its superior signal-to-noise ratio.

The following Code Listing 4.14 codifies the split spectrum processing method described
above.

void splitspectrum(char Infile[128],char Outfile[128],char
LF[128],int *cerr)

{

int i,j,rlength,N,sd=5000 ;

float *tmp, *split, **v;

float min;

FILE *fp;

if ((fp=fopen (LF,"a"))==NULL) {*cerr= 37 ;exit(l);}

fprintf (fp, "$s\n", "Opened logfile from within 'Split Spectrum
processing' C Module");

fprintf (fp, "$s\n", "Ready to execute the program");

fclose (fp);

rlength=getfflength(Infile);
/*** find the frequency range ***/

N=rlength/2;

N=N/10;

v=matrix (0, 9,0, rlength-1);
/*** load the values in separate arrays ***/
for (1=0;1i<10;++1)
{
load data(v[i],rlength,Infile);
}

for (1=0;1i<10;++1)
{
gauss ("gaus.dat",LF, rlength, sd, N*(i+l),cerr);
tmp=vector (0, rlength-1);
load data (tmp, rlength, "gaus.dat");

findfftdata(v[i],rlength);

/*** if prob is greater than 0 then multiply the array value
with the prob else make the array value as zero ***/
for (j=0;j<rlength;++7)
{
if(tmp[i] > 0)

findifftdata(v[i],rlength);
free vector (tmp,0,rlength-1);
}

split=vector (0, rlength-1);

/*** minimization technique ***/
/*** take the min value and store in the array ***/
for (i=0;i<rlength;++1)
{
min= 35000.0;
for (j=0;3<10;++73)
{
if(v[jl[i] < min)
{ min=v[j]1[il; }
}
split[i]=min;

}

save data(split,rlength,Outfile);
free vector(split,0,rlength-1);

if ((fp=fopen (LF,"a"))==NULL) {*cerr= 37 ;exit(l);}
fprintf (fp, "$s\n", "Completed Split Spectrum processing");
fclose (fp);

}

Code Listing 414 The Split-Spectrum Processing

For further discussions on split spectrum processing and typical results, the readers are
referred to the bibliography section where relevant papers are listed.

4.8 Fruits of Data Analysis

A clear outcome of data analysis on the basis of the methods discussed above is that the
initial data is “transformed” into a state that is much more palatable for human
interpretation.

Even at this stage, if we wish to use a machine to interpret the resultant data for us, we
need to provide the machine inputs that are numerical. Processed data in its “raw” form
may be suitable for human interpretation, but for a machine, the processed data must be
presented in a more refined numerical form, may be as a set of measurable properties of
the processed data itself.

Properties of column-vector data or images are also called features. These features are
normally fed to machine-learning algorithms to obtain a final decision.

This procedure has three distinct stages, namely:

. Feature Extraction from the processed data
. Feature Selection and Ranking
. Feature Input to the machine-learning algorithm, to obtain a decision

Let us examine each of these three stages briefly:

The extraction of features from a column-vector of data (signal) or an image is nothing
but the process of “measuring various properties” of the data / image. There are no
limits to the number of properties (or features) that can be measured. The following
Code Listing 4.15 shows a typical set of properties that are measured for a 1-d bipolar

signal. There is however, an important aspect that one needs to remember while
extracting features. The feature extraction algorithm or method, as one shown in the
following Code Listing 4.15, extracts these features irrespective of the domain to which
the input column-vector data belongs. For example, if a property, say, the “distance”
between the first two positive peaks in a column-vector data is measured; this property is
just a “number” until the domain of the input data is factored in. If the input data
belongs to the time domain this “number” would mean something; and if the input data
is from the frequency domain, say, a Fourier transform, then this “number” would mean
a physical property that is entirely different! Hence it is very essential to understand the
domain of discourse, while both extracting and interpreting features.

The second important aspect is the selection of right features and ranking them. As we
saw earlier, there is no limit on the number of features or properties that can be extracted
from a given data record. Selection of right features then means that to consider those
features, for which a physical interpretation is both possible and plausible. Yet, there are
situations where one would be forced to use features that may not have a direct,
established physical meaning. Among the selected features, it would be prudent to use a
minimal set of features for either classification or prediction. It is not true that the
accuracy of classification or prediction improves with increase in the number of features
used. In fact, for every classification problem, there are a set of features which are most
effective, a set whose numbers are usually much less than the total set of features
extracted. One of the most popular algorithms used for ranking features (for their
effectiveness) for a given classification problem, is the Fisher feature ranking criteria.

Once the most effective subset of features is identified, these fed to either a classification
ot prediction algorithm for solving respective tasks.

The following dialog shows the various options available while extracting features from a
set of signals (1-d column vectors):

Extract Signal Features N x|

List File M arne I

Select Filas. .. |

v BRetrnowe Bias v N ormalise

Supply Windowr
’1" ifelch " Hasnings ™ Batlatt {* Rectanoulas

— Exctract Specific Feabases as per Sirnal Souees Thype

i ur " AE " ECT BN " VB fe Al

— Extract Featues from Specific Siznal Diotnains

[Time ¥ At Comelabion
" All Dormains

v Fieq. Mar, v Hilbest Transform

[¥ Fieq. Phase ¥ Cepstrum

{* Select Dotrains
v Auto Power [DMAC Pattern

Cancel | Help | oK

Dialog 4.1 Dialog that shows the Various Input Parameters while extracting features

This dialog, once the User clicks ‘OK’, feeds the various input parameters to the feature
extracting algorithm whose code is shown in Code Listing 4.15.

/* The 'C' function that extracts features from a single, bipolar
signal in an array - Begins Here */
void getbipolsigfeadata(float *data, float *features, int r length)

/************ Features found by thlS Module Ak kkhkhkkkhkkkhkkrkkhkkkkx*k

First Highest Positive Peak Value - Max 1
Second Highest Positive Peak Value - Max 2
Third Highest Positive Peak Value - Max 3
First Highest Negative Peak Value - Min 1
Second Highest Negative Peak Value - Min 2
Third Highest Negative Peak Value - Min 3
Inter-peak Distance Between Max 1 and Max
Inter-peak Distance Between Max 2 and Max
Inter-peak Distance Between Min 1 and Min
9. Inter-peak Distance Between Min 2 and Min
10.First Peak's P-P Value
11.Second Peak's P-P Value
12.Third Peak's P-P Value

O ~J o Ul WNE O

w N w N

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

.Ratio of I t
.Ratio of II

.Ratio of I t
.Total Spectr
.Energy above
.Energy above
.Energy above
.Energy above
.Ratio of TSE
.Ratio of TSE
.Ratio of TSE
.Ratio of TSE
.Net Positive
.Net Negative
.Ratio of Pos
.Ratio of Pos
.Ratio of Neg
.Energy in th
.Energy in th
.Energy in th
.Energy in th
.Energy in th
.Energy in th
.Energy in th
.Energy in th
.Ratio of fir
.Ratio of sec
.Ratio of thi
.Ratio of fou
.Ratio of fif
.Ratio of six
.Ratio of sev
.Ratio of eig
.Number of Ze
.Ratio of Int
.Ratio of Int
.Ratio of Int
.Ratio of Int

Length

51.
52.

Ratio of Int
Ratio of Int

Length

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

.Location of
.Location of
.Location of
.Location of
.Location of
.Location of
.Rise-Time of
.Rise-Time of
.Rise-Time of
.Fall-Time of
.Fall-Time of
.Fall-Time of
.Width of the
.Width of the
.Width of the

o II P-P Values

to III P-P Values

o III P-P Values

al Energy (TSE)
10% of Max. Peak
20% of Max. Peak
30% of Max. Peak
50% of Max. Peak
to features[17]
to features
to features
to features
Area

Area

itive to Negative Area

itive to Total Energy

ative to Total Energy

e first 1/8th Time Slot

e second 1/8th Time Slot

e third 1/8th Time Slot

e fourth 1/8th Time Slot

e fifth 1/8th Time Slot

e sixth 1/8th Time Slot

e seventh 1/8th Time Slot

e eighth 1/8th Time Slot

st Slot to Total Energy

ond Slot to Total Energy

rd Slot to Total Energy

rth Slot to Total Energy

th Slot to Total Energy

th Slot to Total Energy

enth Slot to Total Energy

hth Slot to Total Energy

ro Crossings in the Signal

er-Positive-Peak Distances

er-Negative-Peak Distances

er-Positive-Peak (I-II) Distance to the Record Length
er-Positive-Peak (II-III) Distance to the Record

— — — —

18]
19]
20]

er-Negative Peak (I-II) Distance to the Record Length
er-Negative-Peak (II-III) Distance to the Record

First Maximum Positive Peak

Second Maximum Positive Peak
Third Maximum Positive Peak
First Maximum Negative Peak

Second Maximum Negative Peak
Third Maximum Negative Peak

the First Maximum Positive Peak
the Second Maximum Positive Peak
the Third Maximum Positive Peak
the First Maximum Positive Peak
the Second Maximum Positive Peak
the Third Maximum Positive Peak
First Maximum Positive Peak Pulse
Second Maximum Positive Peak Pulse
Third Maximum Positive Peak Pulse

**/

int 1i,3,k;
int slot, zerocross,currpol,prevpol;
int maxpos[3], minpos[3];

float maxpeak[3], minpeak[3], slottse[8];

float tse, tenpcmaxpeak, twepcmaxpeak, thipcmaxpeak, fifpcmaxpeak,
netpos, netneg, netposen, netnegen;

float maxlOpc, max90pc, temp;

/* The following segment finds the first three maximum and minimum
values and positions */

for (i=0; 1i<3; 1i++)

{

maxpeak[i] = -650000.00;
minpeak[i] = 650000.00;
maxpos[i] = -1;
minpos[i] = -1;

for(j=0; Jj<r_length; j++)
{

if (data[j]>=maxpeak[i]) {maxpeak[i] = datal]j]; maxpos[i] = Jj;}
if(datal[j]l<minpeak[i]) {minpeak[i] = datal]j]; minpos[i] = Jj;}
}
data[maxpos[i]] 0.0;
data[minpos[i]] = 0.0;
}
for (i=0; 1i<3; 1i++)
{
data[maxpos[i]] = maxpeak[i];
data[minpos[i]] = minpeak[i];
features[i] = maxpeak[i]; /* First Three Highest Peaks */
features[i+3] = minpeak[i]; /* First Three Lowest Peaks
*/
}
features[6] = fabs(maxpos[l] - maxpos[0]); /* Inter-peak
Distance Between Max 1 and Max 2 */
features[7] = fabs(maxpos[2] - maxpos[l]); /* Inter-peak
Distance Between Max 2 and Max 3 */
features[8] = fabs(minpos[l] - minpos[0]); /* Inter-peak
Distance Between Min 1 and Min 2 */
features[9] = fabs(minpos[2] - minpos[1l]); /* Inter-peak
Distance Between Min 2 and Min 3 */
features[10] = maxpeak[0] - minpeak[0]; /* First Peak's P-P
Value */
features[1l1l] = maxpeak[l] - minpeak[1l]; /* Second Peak's P-P
Value */
features[12] = maxpeak[2] - minpeak[2]; /* Third Peak's P-P
Value */
if (features[11]!=0.0) {features[1l3] = features[10]/features[1l1l];} /*

Ratio of I to II P-P Values */

if (features[12]!=0.0) {features[14]
Ratio of II to III P-P Values */
if (features[12]!=0.0) {features[1l5] = features[10]/features[12];} /
Ratio of I to III P-P Values */

features[1ll]/features[12];} /

*

*

/* The following segment finds the total spectral energy and energies

at various threshold levels */
tenpcmaxpeak = 0.0;
twepcmaxpeak = 0.0;

thipcmaxpeak = 0.0;
fifpcmaxpeak = 0.0;
tse = 0.0;
netpos = 0.0;
netneg = 0.0;
netposen = 0.0;
netnegen = 0.0;
slot = r length/8;
currpol = 0;
prevpol = 0;
zerocross = 0;
for (1=0; i<8; i++) {slottse[i] = 0.0;}
for(j=0; Jj<r_length; j++)
{
f(datal[j]>=0.0) {currpol = 1l; zerocross = zerocross + currpol -
currpol*prevpol; prevpol = 1;}
f(data[j]<0.0) {currpol = 0; zerocross = zerocross + prevpol -
currpol*prevpol; prevpol = 0;}
tse = tse + dataljl*dataljl;
if (j<=slot) {slottse[0] = slottse[0] + datal[jl*dataljl;}
if((j>slot) && (j<=slot*2)) {slottse[l] = slottse[l] +
datal[jl*dataljl;}
if((3>slot*2) && (j<=slot*3)) {slottse[2] = slottse[2] +
datal[j]*dataljl;}
if((j>slot*3) && (j<=slot*4)) {slottse[3] = slottse[3] +
datal[jl*dataljl;}
if((j>slot*4) && (j<=slot*5)) {slottse[4] = slottse[4] +
datal[j]*dataljl;}
if((3>slot*5) && (j<=slot*6)) {slottse[5] = slottse[5] +
data[jl*dataljl;}
if((j>slot*6) && (j<=slot*7)) {slottse[6] = slottse[6] +
data[jl*dataljl;}
if(j>slot*7) {slottse[7] = slottse[7] + datalj]l*dataljl;}
f(fabs(datal[j]) > (maxpeak[0]*0.1)) {tenpcmaxpeak = tenpcmaxpeak +
data['}*data[1:1}
f(fabs(data[j])>(maxpeak[0]*0.2)) {twepcmaxpeak = twepcmaxpeak +
data['}*data[1:1}
f(fabs(datal[j]) > (maxpeak[0]*0.3)) {thipcmaxpeak = thipcmaxpeak +
data['}*data[1:1}
f(fabs(data[j])>(maxpeak[0]*0.5)) {fifpcmaxpeak = fifpcmaxpeak +
data['}*data[1:1}
f(datal[j]>=0.0) {netpos = netpos + data[j]; netposen = netposen +
data['}*data[1:1}
f(data[j]1<0.0) {netneg = netneg + fabs(data[j]); netnegen =
netnegen + datal[jl*dataljl;}
}
features[16] = tse; /* Total Spectral Energy */
features[17] = tenpcmaxpeak; /* Energy above 10% of Max. Peak */
features[18] = twepcmaxpeak; /* Energy above 20% of Max. Peak */
features[19] = thipcmaxpeak; /* Energy above 30% of Max. Peak */
features[20] = fifpcmaxpeak; /* Energy above 50% of Max. Peak */
if(tse!=0.0) {features[21] = tenpcmaxpeak/tse;} /* Ratio of tse to
features[17] */
if(tse!=0.0) {features[22] = twepcmaxpeak/tse;} /* Ratio of tse to
features[18] */
if(tse!=0.0) {features[23] = thipcmaxpeak/tse;} /* Ratio of tse to
features[19] */
if(tse!=0.0) {features[24] = fifpcmaxpeak/tse;} /* Ratio of tse to
features[20] */
features[25] = netpos; /* Net Positive Area */
features[26] = netneg; /* Net Negative Area */

if (netneg!=0.0) {features[27] =
to Negative Area */
if(tse!=0.0) {features[28] =
to Total Energy */
if(tse!=0.0) {features[29]
to Total Energy */

features[30] = slottse[0]; /* Energy in
*

féatures[3l} = slottse[l]; /* Energy in
*

féatures[32] = slottse[2]; /* Energy in
*

féatures[33} = slottse[3]; /* Energy in
*

féatures[34] = slottse[4]; /* Energy in
*

féatures[35] = slottse[5]; /* Energy in
*

féatures[36} = slottse[6]; /* Energy in
Slot */

features[37] = slottse[7]; /* Energy in
*/

if(tse!=0.0) {features[38] =
Slot to Total Energy */
if(tse!=0.0) {features[39] =
Slot to Total Energy */
if(tse!=0.0) {features[40] =
Slot to Total Energy */
if(tse!=0.0) {features[4l] =
Slot to Total Energy */
if(tse!=0.0) {features[42] =
Slot to Total Energy */
if(tse!=0.0) {features[43] =
Slot to Total Energy */
if(tse!=0.0) {features[44] =
Slot to Total Energy */
if(tse!=0.0) {features[45] =
Slot to Total Energy */
features[46] = zerocross;
Signal */

if (features[7]!=0.0) {features[47] =
Ratio of Inter-Peak Distances */
if (features[9]!=0.0) {features[48]
Ratio of Inter-Peak Distances */
features[49] = features[6]/r length;
Distance to the Record Length */
features[50] = features[7]/r length;
Distance to the Record Length */
features[51] = features[8]/r length;
Distance to the Record Length */
features[52] = features[9]/r length;
Distance to the Record Length */

features[6]/features[7];}

features[8]/features[9];}

features[53] = maxpos|[0]; /* Location
features[54] = maxpos[l]; /* Location
features[55] = maxpos[2]; /* Location
features[56] = minpos[0]; /* Location
features[57] = minpos([1l]; /* Location
features[58] = minpos[2]; /* Location

i = maxpos[0];

max1l0pc = maxpeak[0]*0.1;

netposen/tse; }

netnegen/tse; }

the

the

the

the

the

the

the

the

slottse[0]/tse;}
slottse[l]/tse;}
slottse[2]/tse;}
slottse[3]/tse;}
slottse[4]/tse;}
slottse[5]/tse;}
slottse[6]/tse;}

slottse[7]/tse;}

/s
/s
/x
/s

of
of
of
of
of
of

Ratio of
Ratio
Ratio
Ratio

First
Second Maximum Peak */
Third Maximum Peak */
First Minimum Peak */
Second Minimum Peak */
Third Minimum Peak */

netpos/netneg;} /* Ratio of Positive

/*

Ratio of Positive
/* Ratio of Negative
first 1/8th Time Slot
second 1/8th Time Slot
third 1/8th Time Slot
fourth 1/8th Time Slot
fifth 1/8th Time Slot
sixth 1/8th Time Slot

seventh 1/8th Time
eighth 1/8th Time Slot

/*

Ratio of first

/* Ratio of second

/* Ratio of third

/* Ratio of fourth

/* Ratio of fifth

/* Ratio of sixth

/* Ratio of seventh

/* Ratio of eighth

/* Number of Zero Crossings in the

/*
/*
Inter-Peak

of Inter-Peak
of Inter-Peak
of Inter-Peak

Maximum Peak */

max90pc maxpeak[0]1*0.9;
k = 0;
do {
temp = datalil:;
if (temp<=max90pc) {k =
i=1-1;
} while ((temp>max10pc)
features[59] = k;
*/

i = maxpos[1l];
maxl0pc = maxpeak[1]*0.
max90pc 0
k = 0;
do {

temp datalil;

if (temp<=max90pc) {k =

i=1i-1;

} while ((temp>max10pc)
features[60] = k;
*/

I
3
o]
X
o}
10)
o]
o
-
*

i = maxpos[2];
maxlOpc = maxpeak[2]*
max90pc = maxpeak[2]*
k = 0;
do {

temp datali];

if (temp<=max90pc) {k =

i=1-1;

} while ((temp>max10pc)
features[6l] = k;
*/

o O
.
O
~

i = maxpos[0];
maxl0pc = maxpeak[0]*
max90pc = maxpeak[0]*
k = 0;
do {

temp = datali];

if (temp<=max90pc)

i=1+4+1;

} while ((temp>max10pc)
features[62] = k*1.0;
Peak */

{k =

i = maxpos[1l];
maxl0pc = maxpeak[l]
max90pc = maxpeak[l]
k = 0;
do {
temp = datali];
if (temp<=max90pc)
i=1+ 1;
} while ((temp>max10pc)
features[63] = k*1.0;
Maximum Peak */

*0.1;
*0.9;

{k =

i = maxpos[2];
maxl0pc = maxpeak[2]*

0.1;
max90pc = maxpeak[2]*0

1
.9;

k + 1;}

&& (1>=0));

/*

k + 1;}

Rise-Time of the First Maximum Peak

&& (1>=0));

/* Rise-Time of the Second Maximum Peak

k + 1;}

&& (1>=0));

/* Rise-Time of the Third Maximum Peak

k + 1;}

&& (i<=r_ length));

k + 1;}

/* Fall-Time of the First Maximum

&& (i<=r_length));

/* Fall-Time of the Second

k = 0;
do {
temp = datali];
if (temp<=max90pc) {k = k + 1;}
i=1+4+1;
} while((temp>max10pc) && (i<=r_length));

features[64] = k*1.0; /* Fall-Time of the Third Maximum
Peak */

features[65] = features[59] + features[62]; /* Width of the First
Maximum Peak Pulse */

features[66] = features[60] + features[63]; /* Width of the
Second Maximum Peak Pulse */

features[67] = features[6l] + features[64]; /* Width of the Third

Maximum Peak Pulse */

}
/* The 'C' function that extracts features from a single, bipolar
signal in an array - Ends Here */

Code Listing 4.15 Feature Extraction Module for a single, bi-polar signal

Code Listing 4.16 (a-c) show the extraction of 52 invariant moments from a given image.
Invariant moments are very effective in characterising an image, since these properties
are translation, rotation and magnification independent, and hence truly characterise the
image.

While using the invariant features, one must remember that these features are “global”
features of the image. That is, these features do not capture the local variations within
two images so very effectively. For example, if we have two images having a number of
smaller objects within them, one set of objects having smaller radii, then, the invariant
features of these two images may not be distinct enough for classification. In such cases,
one must use object analysis functions that truly characterise the objects present inside an
image. If the objective is the global classification of images (for example, images having
different textures), then these invariant features can be fed to a classification algorithm
directly.

void imoments (char TD[128], char IN[128], char LS[128], char FI[128],
int size, char OPID[128], char LF[128], int *cerr)
{

float *x; /* Storage for Pixel Values Read from
a File */

float **xv; /* Stores the pixel values for ONE
file at a time */

float *xmean, *ymean; /* Stores the Mean X and Y co-orinate

values, for various
rows and columns, in floating

point */

float *pvalue; /* Pixel Value holder for a Column or
Row */

double meanx, meany; /* Stores the actual mean values of
'x'" and 'y' co-ords. */

int i nodes; /* Total number of nodes in the

Hopfield NN = size*size */

int n files;
filename.lst */
int index, skip, count;

char f name[128]; /*

char fnames[128]
char noname[128] = "";
[]

char ffname[128 ",
features */

char xyname([128] = "";
names of the 'xyval*.fea'
char xyfid[128] = "";
Feature ID Values */

char extenl[] = "DAT";
char exten2[] = "FEA.LST";
char exten3[] = ".FEA";
char extend4[] = "FEA.FID";

char buffer[5];

current Session Number */
float temp;

holder */

double mu[10][107];

double a[l2]1[12],b[12][12];

the invariant moments */
double m[53];

*/

int jlkl l,p,q;

int sl, opl, tdl;

double pl0,p01;

/* Number of files listed in

/* Just Counters ! */

Name of the individual files */
; /* Name of the individual files */

/* Empty String */
/* Name of the file that contains the

/* Name of the file that stores the

filename */

/* Name of the File that holds the

/* File extension */
/* File extension */
/* File extension */
/* File extension */
/* Temporary Storage space for

/* Temporary floating-point value

/* Stores moments of m[p][q] */
/* Stores the intermediary values of

/* Stores the final invariant moments

/* Just Counters */
/* Length of a string */

float maxpos, maxneg, range,pp,dd;

FILE *fpi;
FILE *fpf;
FILE *fpt;
FILE *fp;
FILE *fpl;

if ((fpl=fopen(LF,"a")) == NULL) {*cerr = 43; exit(1l);}

fprintf (fpl, "%$s\n", "Opened

Module") ;

Log file from

within 'imoments' C

fprintf (fpl, "$s\n", "Ready to Execute the Program");

fclose (fpl);

tdl = strlen (TD);

sl = strlen(LS);

sl = sl - 7;

strncat (xyfid, LS, sl);
strncat (xyname, LS, sl) ;
strncat (xyfid, extend,7);
strncat (xyname, exten2,7) ;

o~~~ —~

if ((fpl=fopen (LF,"a")) == NULL) {*cerr = 43; exit(1l);}
fprintf (fpl, "$s\n", "This Segment is Image Feature Extraction");
fprintf (fpl, "%$s\n","The following pairs of XY files / images were

used in this Session");
fclose (fpl);

n_files
i nodes

size * size;

getsflength (LS) ;

/* Memory Allocation for various arrays */

x=vector (0,1 nodes-1);

xv=matrix (0,size-1,0,size-1);
xmean=vector (0,size-1);
ymean=vector (0, size-1);
pvalue=vector (0,size-1);

/* End of Memory Allocation */

if ((fpl=fopen(LF,"a")) == NULL) {*cerr = 43; exit(1l);}
fprintf (fpl, "%$s%d\n", "Size = ",size);

fprintf (fpl, "%$s%$s\n", "Input Filename.lst = ",FI);
fprintf (fpl, "$s%d\n", "Total Number of Files = ",n files);
fprintf (fpl, "$s%d\n", "Total Number of Nodes = ",i nodes);
fprintf (fpl, "$s\n", "The following (*.bmp or XY) files were used, to
get the feature values (*.fea) :");

fprintf (fpl, "%$s%$s\n", "These *.FEA files are listed for further
processing in ", xyname) ;
fclose (fpl);

fp = fopen(IN,"r");

fpi = fopen(FI,"xr");

fpt = fopen (xyname,"w");

for (index=0; index<n_ files; index++) /* index is the counter for

the file number */
{ /* step is used as the file counter in the later parts of the
Program */
fscanf (fpi, "%s", &f name) ;
fscanf (fp, "%$s", &fnames) ;
sl = strlen (fnames);
sl = sl - 4;
strcpy (ffname, noname) ;
strncat (ffname, TD, tdl) ;
strncat (ffname, fnames, sl) ;
strncat (ffname, OPID, opl) ;
strncat (ffname, exten3, 4);

if ((fpl=fopen(LF,"a")) == NULL) {*cerr = 43; exit(l);}
fprintf (fpl, "$s %c%c%c %$s\n", fnames,'-','-"','>"',ffname);

fclose (fpl);
if (index!=n files-1) {fprintf (fpt,"%s\n", ffname);}
else {fprintf (fpt,"%s", ffname);}

fpf = fopen(f name,"r");

maxpos = 0.0;

maxneg = 0.0;

for (count=0; count<i nodes; count++) /* count 1is the counter for

the data points in a file */

{ /* index is the counter used for referring to data points
later in the Program */

fscanf (fpf, "%d", &skip) ;

x[count] = skip;
if (skip>maxpos) {maxpos = skip;}
}
range = maxpos - maxneg;
for (count=0; count<i nodes; count++) /* count is the counter for

the data points in a file */

{ /* index is the counter used for referring to data points
later in the Program */

k= (count%size);

if (count<=size-1) {1 = 0;}

if (count>size-1) {1 = (count-k)/size;}

v);
v);
p0l = moment(0.0,1.0,size,meanx,meany, xv) ;

X
X

,0.0,
,0.0,

.0
.0

p++)
q++)
(p+q) <10)

moment (0.0,0.0,size,0.0,0.0,xv);
g<10;

(maxpos - x[count])/range;

moment (0.0,1.0,size, 0
moment (1.0,0.0,size, 0

p<10;
0;

if ((p+g)>1 &&

0;

pl0 = moment(1.0,0.0,size,meanx,meany, xv) ;
for (g

xv[1] [k]
}

fclose (fpf);
mul[0] [0]
mul[0] [1]
mu[1][0]
for (p

Ne) e}
o o
= 2 2
> — e
b woew 4+ O~ +
D>~ — D e = 0D
o — SINTeEEEI I N R
© O e e e e e e e e
Q — ~ o~ o~ S O — 3
g — ES — — — e O —— N g —«N
. O < < <60 == 33— 83—
o 0] — — —— 33 E E 31 g 3
ol 9 — — —— £ £ X =]]
© g 0] o o — O X O + x — + %
O~ q — — — O e o < o
g — 3 3 3 3 O — o=
~ O o} =] =] E EM — M M — oMW
o — 0] o~ o~ o + — N =
N — 2 + ~+ ~+ + 1 = — 4+ = —
- O © [INEEIN — — — — N |5 M
n — — — —— M — M ——— NN — — g — —
~ 3 3 N ™M N — N =N MmN —— 3N 5 N
o £ @) e e e e e UJm[_ m_|.
o'~ — LINEEIN LI R T B e T = e o I S * —
< O © — — — A O N — N — MO NM*x —O F —O <
Q, o @) NN N == =< 33— 3—=—=—O0O 3 «—N -
Q ~ — = —— 33 3—E3E 333 «-EOC 3—N3
~ Q 0} —— —— g g E — £ E E EN*x o E — £
FE O “ [N — O * x O + x 1 x x x o x < 4+ x
o~ @® — — =0 | O - o OO + 1 O— o
o e = e TG s T s R P o 3 = .
e 4 — n EE—LEEMNOM AN EA O ANNN——A—M & A LO
o O + 0] — — — — — — —
g < + NN S + =+ + 1 =+ 1 =1 =+ + 1 =1 =+ + =
— o' o o — — — ™ ™ — — [Te}
([l + . © — A —m N e = - L <
—+ o~ o o = OO —O0O 10 —00 30 30140 —0—0O0 3O
— — 0, o~ I i B e R = T =T e T e TR IRy]
o~ OO — [T [0} B T e T e E— E — — ~ —
Q O — = o~ Vv ES] NN *x ONMKx P T x < x OO X O Kk OO O
—_— — e\ o' —_— — © L O L O e O e O e e O e O e e O
oo — o' o - 33 «333 «+33 +«+3 «+333 +«+3 «33 «3
— Vv -~ — ie) EENEEEMEENET EEEEEENE
0,0 33 Q, o — — 10)
— 0,0 E g —~ ? QO m L | e e | | | | | A | R | A {1
— (@) ~ —~— © Q —~ 9 —m e
I M in] ONN—TAAMMONNTI A MM ONN
—~— m{f —_~ m JJJJJJJJJJJJJJJJJJJJJJ
o OO NN OO0 OO0 0000
O R R e R e e e e e e B S B e i e R e I
[~ Mo QO . o Qo oc.Q QO o c.Q Qo c.Q

e e e e e e

5.0*mu

O — O W W W O O o
—

L I el B e B e B e B e B B B |
—

— N e e
Og— 01 W W~ o O
o Ne L e e e e e

3
c
=

—
—

~J
—

7.0*mu

O — O >
— —

—/ O\

J —

s

mul[0]

—— J 0O —® JO0O — 9 OO0 0o OO0
r—vr—v'g

CNe e e
NN

OO0 Oo0OCc O —~00 oY —

QO Oy O — O O b —

—
— e e I — = O

H—FP OFP ORFRP~"0NO—OOO— O« OO 00w O -~
L L L e Ne e e

84.

36.

= 4.0*(mu[5][1] - mul[l][5]);
= mul[6][0] - 15.0*mu[4][2] + 15.0*mu[2][4] - mu[0][6];
= 2.0%(3.0*mu[5][1] - 10.0*mu([3][3] + 3.0*mull][5]);
= mul[7][0] + 3.0*mul[5][2] + 3.0*mu[3][4] + mul[l][6];
=mul[6][1] + 3.0*mu4][3] + 3.0*mu[2][5] + mul[0][7];
= mu[7][0] - mu[5][2] - 5.0*mu([3][4] - 3.0*mu[l][6];
= 3.0*mu[6][1] + 5.0*mu[4][3] + mu([2][5] - mul[0][7];
= mul[7][0] - 9.0*mul[5][2] - 5.0*mu 3] [4]

= 5.0*mu[6][1] - 5.0*mu[4][3] -

= mul[7][0] - 21.0*mu[5] [2] +

= 7.0*mu[6][1] - 35.0*mu[4][3] +

= mu[8][0] + 4.0*mu[6][2] + 6.0*muf4][4] + 4.0*mul2][6]
= mu([8][0] + 2.0*mul[6][2] - 2.0*mul[2][6] - mul[O][8];
= 2.0*(mu([7][1] + 3.0*mul[5] [3] + 3.0*mul[3][5] +
= mul[8][0] - 4.0*mu[6][2] - 10.0*mul4][4] -
mu[0][8];
= 4.0*(mul[7][1] + mu[5][3] - mu[3][5] - mul[l][7]);
= mu[8][0] - 14.0*mul[6][2] + 14.0*mu(2][6] - mu[0][8];
= 2.0*(3.0*mu[7][1] - 7.0*mu[5][3] - 7.0*mu[3][5] +

= mu[8][0] - 28.0*mu[6][2] + 70.0*mu[4][4]

O*(mu (7111 - 7.0*mu[5][3] + 7.0*mu[3][5]

+ 6.0*mu[5] [4]
+ 6.0*mu[4] [5]
6.0*mu[5][4] - 8.0*mu[3][6]
8.0*mul[6][3] + 6.0*mu[4][5]
8.0*mul[7][2] - 14.0*mu[5] [4]

= 5.0*mu([8][1] - 14.0*mu[4][5] - 8.0*mu[2][7]

= mul[9][0] - 20.0*mu[7][2] + 14.0*mu[5] [4]
- 7.0*mu[1][8];

= 7.0*mul8][1] - 28.0*muf[6][3] - 14.0*mu[4][5]
- mul[0] [9];

= mu[9][0] - 36.0*mu[7][2] + 126.0*mu[5] [4]
+ 9.0*mu[1l] [8];

= 9.0*mu[8][1] - 84.0*mu[6][3] + 126.0*mu[4][5]
+ mul[0][9];

m[1l] = a[4][0];

m[2] = pow(al4][2],2.0) + pow(b[4][2],2.0);

m[3] = al4][2]*(pow(al5][1],2.0) - pow(b[5][1],2.0))
2.0*a[5][1]1*b[5]1[1]1*b[4]([2];

m[4] = pow(a[5][1],2.0) + pow(b[5][1],2.0);

m[5] = pow(al[5][3],2.0) + pow(b[5][3],2.0);

+ 4.0*mul[3][6]

+ 4.0*mul2][7]

— — + | + — — + | + — — I+
(@] (@) (@] (@) (@] (@]
N o~ — — — ~N ~N — — — N N -
~ ~ —_ —_ —_ ~ ~ —_ —_ —_ ~ ~ -
— — o o o — — o o o — — o
— — . . . — — . . . — — M
[a— — e o~ o~ — — o~ o~ o~ — — <
el T en ~ ~ ~ el T e ~ ~ ~ el T en ~
o 0 — — — ~ D~ — — — (o) NN S
=== NN == NN o — =~ .
folo S folo e folo<w
. . — — — . . — — — . .
2N 2N o o~ 2N 2N © @© O 2N 2N
O o 0O o - [[O 0O o — — — O . O . —
0 — O — Q2 Q9 Q Qi — O — Q Qo Q 0 — o —~_2
R B ~ ~ ~ o B ~ ~ ~ oA X A
O O L z z z o O z z z OO gy B
e o) 0 0 S e} e} e} e e 9
™M M n Q. 9 O M~ M~ ST o T o Do Mo g M
— — ~ ~ -~ ~ ~ — — ~ ~ ~ -~ ~ ~ ~ — [(O
ol Q —— ~~~ 1 ol Qq —_ e~~~ ~—~—~~1l ol o=z
~ ~ o O o O O ~ ~ O O O O O O o ~ (05
—Z ~ = . | 1 1 . o~z ~ % 1 1 .o ~ 2~ 2 0
S 0O 0o NN NNNO OO 0 N NN NNNNO OO 0 —
0, O N < 0~ ~ 0 0 S 0~ ~ N N N N o, * O x
N ~N —_— — — — ~N —_—— ———— N N — 4+
~ 1~ N~ —~ —~ — M m o~ o~ N O~ —~ —~ — MO~ S~ o~ N
—_ —_ o o o e e —_ s O o [S — L
o~ —_— . . —_—— o~ o~ —_——— e . . —_— e~ o~
— o — O O ©O© N N N ~S~>~— 00— o o o oo N N A OYOYOY —O — O oy ~
— . /e — N ~ ~ e — e N ~ N L e e e o
O N WO N Q Q — — — QO Qo> N> Q Q. Q— — — Q0 Q0 Q00NN © -
— l[~ ((2 2 1 ~ S~ S~ ’[~ (((2 2 l (((((l.|. ’*2
B — @ — z oz — — 2 2 2 00— O — 2z 2 — — 22 2 2 08— 08— — ~
~ T O O — — — O OO0~ T O O O — — — OO0 00 ~THATAH —
B = B 0, 0,0 o [000 2= 3= Q0 0,® o 2 0000 3= 32— d
O — O — — — — O — O — — — — O — O — — —
Q0 w0 + + © © © + + + &~ QA + + + @© © @ + + + + Qo Qoo —
Rl - - - ol - - - T2 o
¥ © % ®© ~~ B N B B N~ ~~% ¥ ®© N~~~ B N B B e~~~ o~ X ©* © @ —
— o~~~ OO0 00— 0 —0 —0 00O —m~—r—— OO0 0 00— 0 —0 0000 mm~—r— — Q
M oM oz . Q< O QN - . ™M 2 M 2 Q< O QN - . M M 2 ~
— 0 “— O NN 7= T e NNN— 0“0 AN NN T T e e NNNN— O— O =z
— O, — 0O, N L T T S e R o H e i o N T T e N o, — 0O, o
0 x 0 x — O — O = O == xSk — e 0 0 O e/ Ok O Q,
— o — o N = =N =MW —O —O N O =< —N——FMNO>—0O —O *
S .« QO . e Q= g — Q——— ® ..Q . e Qe @ Qe e e @ . Q. —
K N X M wr—m X —m K e XK e K MK N e — X M X —m X ke KM XK M o
JJJJJ O OWO —9OW O =~~~ ~—0 0 0WO®Wr—~O—0 —O OO O) —m ~—~ rm — .
A x —Hx O—r— NN A X H x O N o e e o — k __2
= ——=— o g ©—Q— 0 — 0 g ——"———© o ® ©C—Q— 0 — © O C ' ——"— — ~
— N M —_ e N — M — = = - —_ — = = = — — ™M —m —_
N — w0 —©0 2 2 o O ~ 2R 2 2R og) o) N2 E 2 2O =0 —
— === — 0 O — — — 0 0O o0 ——"——— 0 O O — — — O O O O = m—"—"m— —
o 8w o 01 Qll QI Q000 08~ O~ o ool Ol QI Qo0 0 0 o © o —
— — * * * — — X * X — — o
[[ro T I | I [— — Lo T | T | @ T v | R B [R — — — ol o —
* * N N — * ES N N — * * (o]
O A~ ODDO A — AN —m M —<FDO> A0 AN ANN M/ —mLD —mO™> 00O A AN =
M[M[mm11616171l11[1[122228282922223[3[3O
— — e 5 b e e e e e e e e b e e e e e e e e b e e e e e e e e e e e o,
Lo Lo EECEmCBEmCEEEE-E-EEEEETCE®BE®EEEEEOSEOS E X
— — * X * — — X * ES — — o
Q Q o o o Q Q o o o Q Q .
. (@)
+ | ~N e\ ~N + 1 N ~N e\ + I —

+ 5.0*pow (b[9][1]1,4.0))

+ pow (b[9][1],4.0));

al9] [11*b[9] [5]* (pow(al9][1],4.0)

m[33]
10.0*pow(a[9][1],2.0) *pow(b[9][1],2.0)

10.0*pow(a[9]1[1]1,2.0) *pow(b[9]1[1],2.0)

b[9] [1]*b[9] [5]*(5.0*pow(al9][1],4.0)

+ + +
o o o o o
N ~N N ~N e\
< < < < <
o~ N ~N < < —
= o o o o —
. — — — — —
< - - N s N
~ Q Q Q Q Q
- 3 = 3 = 3
) o} e} o} e}
™ OOOOP Q Q Q Q
Q NN NN
= NG| | |
= —_———
O AN <O
Q, i IR — — — —
—_,—_—,—_—,—O o o o o
+ [cNoNeNe}
— o~ =N ~N N e\ e\
—_ —_ e ~ ~ ~ ~
o O .0 Q0 .9 — — — — —
. —~ = - — N ~N < Sl —
N 2 ZE 22— — — — —
~ O O O O — — — — —
— 00 0 00 o o o —
— — — — — —
- B ST S P S
— C— @r— @ — @ — @ —
A~~~ o~ I — S — O — O —
" COOO 2020z iz 0z
Q . . O— 0O — QO — O — QO —
~ NNANN OO0 00 0,0 00 00
= S s v —H — — H —
o IR e e et e
Q, NSO ——Q — T —.Q — © — Q
* Lo e g K P K 00 K 00 K (N K
P T T B e B e T e B I e B e I e B e B I e B I
O — OO0 OO —~N — N — I — I —
cO A4 HHO —0O0 —0O0 —o —o —
N — — o /o /o —/
N— © © © B — O +— O —O O —
— O~~~ g4 Q9 o Q- ©d
—— O O O O Q Q Q Q Q
e T TR TN N (A TR
o)) —_ —_ —_ —_ —_
L [[I | eV e\ < < —
a — [— [— — [—
BN OMS~0NOOO0OO0O AdO0ONOM A
OMM MMM A < A T A < T A
p [[[[[[[[[[[[[[[
x EEEEEECE OCE®E®E®
o * * * * *
. o o o o o
(@)
— ~N N N ~N N

m[44] pow(al[l1][1]1,2.0) + pow(b[11][1]1,2.0);

m[45] = pow(a[ll][3],2.0) + pow(b[11][3],2.0);

m(46] = pow(a[l1l][5],2.0) + pow(b[11][5],2.0);

m[47] pow(al[ll1]1[7]1,2.0) + pow(b[11][7],2.0);

m[48] = pow(a[l1l]1[9],2.0) + pow(b[11]1[9],2.0);

m[49] = a[ll][1]*a[11][3]* (pow(a[ll][1],2.0)
3.0*pow (b[11][1],2.0)) + Db[11][1]*b[11][3]1*(3.0*pow(al[ll][1],2.0)
pow(b[11][1],2.0));

m[50] = alll][1]*b[11][3]*(pow(al[ll][1],2.0)
3.0*pow (b[11]1[11,2.0)) - Db[l1l][1]1*a[l1l1]1[31*(3.0*pow(al[ll][1],2.0)
pow (b[11][1]1,2.0));

m[51] = a[ll][1]*a[11]([5]* (pow(a[l1][1],4.0)
10.0*pow(a[11][1],2.0)*pow(b[11][1],2.0) + 5.0*pow(b[11][1],4.0))
b[11][1]1*b[11][5]1*(5.0*%pow(a[l1][1],4.0)
10.0*pow(a[11]1[1],2.0) *pow(b[11]1[1]1,2.0) + pow(b[11][1],

m[52] = alll][1]1*b[11][5]*(pow(a[1l1][1], 4 0)
10.0*pow(a[11]1[1]1,2.0) *pow(b[11][1],2.0) + 5.0*pow(b[11][1]1,4.0))
b[11][1]1*a[11][5]1*(5.0*%pow(a[l1][1],4.0)
10.0*pow(a[11]1[1]1,2.0)*pow (b[11][1],2.0) + pow(b[11][1],4.0))

remove (f name) ;

fpf = fopen(ffname,"w");

for(j=1; 3j<53; J++)

{

if(j!=52) {fprintf (fpf,"$f\n",m[J]);}
else {fprintf (fpf,"%$f",m[j]1);}

}

fclose (fpf);

} /* This bracket closes operation of the file counter index,

i.e., end of processing
for one file */

/* The following segment registers the feature ID values 1in the

corresponding file */
fpf = fopen(xyfid, "w");
for(j=1; 3j<53; J++)
{
if(j!=52) {fprintf (fpf,"%d\n",j+1000);}
else {fprintf (fpf,"% d",j+1000 ;)
}
fclose (fpf);
/* The above segment registers the feature ID values 1in
corresponding file */

fclose (fpi
fclose (fpt
fclose (fp);

)I
)I

’

/* Freeing Memory Allocated for Various Arrays - Begin */
free vector(x,0,1i nodes-1);

free matrix(xv,0,size-1,0,size-1);

free vector (xmean,0,size-1);

free vector (ymean,0,size-1);

free vector (pvalue,0,size-1);

/* Freeing Memory Allocated for Various Arrays - End */

f((fpl=fopen(LF,"a")) == NULL) {*cerr = 43; exit(l);}
fprintf (fpl, "$s\n", "Completed 'imoments' C Module");

fclose (fpl);
*cerr = 0;
} /* End of the function imoments */

Code Listing 4.16a To find the 52 invariant moments of an image

double moment (float p, float g, int size, double meanx, double meany,
/*float totpix,*/ float **xv)

{

int m,n;

double mf,nf;

double dx, dy;

double mpqg;

mpg = 0.0;

for (m=0; m<size; m++)
{
for (n=0; n<size; n++)

{

mf = m;
nf = n;
dx = mf - meanx;

dy = nf - meany;
mpg = mpg + pow (dx,p) *pow (dy,q) *xv[m] [n];
}

}

return mpqg;

}

Code Listing 4.16b To find the moment (a sub-function of imoments)

double norm(float p, float g, double m, double Db)

{
double tmpl;
double tmp2;

tmpl = ((p+q)/2.0) + 1.0;
tmp2 = pow (b, tmpl) ;
return m/tmp2;

}

Code Listing 4.16c To find the norm (a sub-function of imoments)

Figure 4.21 (a-c) show three different regions in a weld, and their corresponding invariant
image features. In each case, only a partial list of features are shown (among the total 52
image invariant features available), just to highlight the differences in their values.

& Weld155N2555¢.FEA - Notepad

File Edit Format Help

0.499355
0.005048
-0. 000202
0. 002942
0. 006412
0. 000005
0, 000012
0.376524
0.
Q.

001985
Q086246
-0.000041
-0, 000180
-0. 0003594
0. 008891
0.004227
0. 007267

[T AT Tl

Figure 4.21a Raw Image of a Weld (Weld15.bmp) and some of its Invariant Features

1?3 Weld2?55MN2559g.FEA - Motepad

File Edit Format Help

0.5723209
0. 003307
-0, 000251
0.004454
0. 005063
0. 000011
=0, 000015
0.471055
0. 000950
0.024387
-0, Q000D
0. 000120
-0, 000465
0. 015010

[T R I R]

Figure 4.21b Raw Image of a Weld (Weld25.bmp) and some of its Invariant Features

-!E-i Weld395M2561i.FEA - Notepad
File Edit Format Help

0.451427
0. 005253
-0, 000125
0022045
0. 001964
0., 000003
0. 000003
0.
0.
0.

)

307450
Q00845
D10358
-0, 000044
-0, 000074

—i Mttrl B

Figure 4.21c Raw Image of a Weld (Weld39.bmp) and some of its Invariant Features

As one can see from Figures 4.21 (a-c), even minor changes in the image under analysis,
generates different invariant image features. These image features can then be fed to a
classification algorithm for data partitioning.

Among the many classification algorithms we present the feed-forward, error back-
propagation multi-layered perceptron method below. The reader would be best advised
to see the Frequently Asked Questions for this Neural Network, posted in the web, for
up to date, authentic information.

The corresponding code for this algorithm is shown in the Code Listing 4.17.

/* Implementation of Backpropagation NN */

void backprop(int mode, int nnm, char FI[128], char WF[128], int

i nodes, int h layers, int o nodes, int hln, int h2n, int h3n, int
h4n, int hbn, int hén, int rate, int max epoch, int dcbr, int norm,
int sesnum, char LF[128], int *cerr)

{

int index, count, step, loop; /* Just counters ! */
int r length; /* Length of a single record */
int n files; /* Number of files listed in

filename.lst */

char f name[128]; /* Name of the individual files */

char ocname[13] = "CLAS"; /* Name of the file that stores the
classification result */

char efname[13] = "EVAL"; /* Name of the file that stores the
epoch, patt err and other results */

char exten[] = ".DAT"; /* File extension */

float sum; /* This finds the total of each record */

float mean; /* This finds the mean of each record */

int skip; /* No. of points to skip after reading a point in

the input file */
float high, low; /* Stores the max. and min. values among all the
files */

float fact; /* Used in normalisation and linear mapping */
float learnrate,lrate; /* Variable for holding the learning rate */
float **rawdata; /* This holds the raw signal data (initially)
*/

float ***wt; /* Stores the weights between nodes of any
two successive layers */

float ***nw; /* Stores the weights when patt err is the
lowest */

float **ot; /* Stores the output of a given node in a
given layer */

float **ft; /* Stores the factored output (x*(l1-x)) of a
given node in a given layer */

float **et; /* Stores the error of a given node in of a
given layer */

int *des out; /* Desired Output Value (Class Number) for
each file - Classification */

float *des; /* Desired Output Value (Class Number) for each
file - Prediction */

int *h nodes; /* Number of nodes in the given layer; +2:

one for i/p and one for o/p layer */

float temp; /* A temporary storage variable ! */
float flash; /* A temporary storage variable ! */
int epoch = 0; /* Stores the Epoch Number */

float patt err; /* Pattern Error (Desrd. O/P - Actual O/P) */

float patt low; /* Stores the lowest pattern error */
char buffer[5]; /* Temporary Storage space for current
Session Number */

int hln[6]; /* Temporary Storage for No. of Nodes in Hidden

Layers */
float fepoch, fmax epoch; /* The floating point equivalents of epoch
and max_epoch */

FILE *fpi;
FILE *fpw;
FILE *fpf;
FILE *fpt;
FILE *fpl;

if ((fpl=fopen (LF,"a")) == NULL) {*cerr = 40; exit(1l);}
fprintf (fpl, "$s\n", "Opened Log file from within 'backprop' C
Module") ;

fprintf (fpl, "%$s\n", "Ready to Execute the Program");

n files = getsflength(FI); /* Get the length of the file FI */

fpi = fopen(FI,"r");

fscanf (fpi, "%s", &f name) ;

fclose (fpi);

r length = getfflength(f name); /* Get the length of the file f name
*/

/*
Dynamic Memory Allocation Begins Here */

rawdata=matrix(0,n files-1,0,1i nodes-1); /* Holds the raw
signal */

wt=f3tensor (0,h layers+2,0,i nodes-1,0,1i nodes); /* Stores the
weights between nodes of any two successive layers */

nw=f3tensor (0,h layers+2,0,i nodes-1,0,1i nodes); /* Stores the
weights when patt err is the lowest */

ot=matrix(0,h layers+2,0,i nodes); /* Stores the
output of a given node in a given layer */

ft=matrix(0,h layers+2,0,i nodes-1); /* Stores the
factored output (x*(1-x)) of a given node in a given layer */
et=matrix(0,h layers+2,0,1i nodes); /* Stores the

error of a given node in of a given layer */

if (nnm == 53) {des_out=ivector(0,n files-1);} /*
Desired Output Value (Class Number) for each file */

if (nnm == 54) {fprintf (fpl,"%$s\n","Assigning Memory for desired
values..."); des=vector(0,n files-1);}

h nodes=ivector (0,h layers+2); /* Number of

nodes in the given layer; +2: one for i/p and one for o/p layer */
/* End of Dynamic Memory Allocation */

temp = sesnum;

_gcvt (temp, 4,buffer) ;
strncat (ocname,buffer,4);
strncat (efname, buffer, 4)
strncat (ocname, exten, 4);
strncat (efname, exten, 4);

’

skip = r length/i nodes;
[

h nodes[0] = i nodes;

hln[1] hln;

hln[2] = h2n;

hln[3] = h3n;

hln[4] = h4n;

hln[5] = hbn;

hln[6] = hon;

h nodes[h layers+l] = o _nodes;
learnrate = rate/10.0;

for (step=1l;step<=h layers; step++)

(
{
h nodes[step] = hln[step];
}

fprintf (fpl, "%$s\n","This Segment is BackProp Neural Network");

fprintf (fpl, "%$s%d\n", "Skip = ", skip);
fprintf (fpl, "$s%d\n", "Input Nodes = ",i nodes);
fprintf (fpl, "$s%d\n", "Hidden Layers = ",h layers);

fprintf (fpl, "$s%d\n", "Output Nodes ",o nodes);

(
(
(
(
(
fprintf (fpl, "%$s%d\n", "Nodes in Hidden Layer 1 = ",hln);
fprintf (fpl, "$s%d\n", "Nodes in Hidden Layer 2 = ",h2n);
fprintf (fpl, "$s%d\n", "Nodes in Hidden Layer 3 = ",h3n);
fprintf (fpl, "$s%d\n", "Nodes in Hidden Layer 4 = ",hédn);
fprintf (fpl, "$s%d\n", "Nodes in Hidden Layer 5 = ",h5n);
fprintf (fpl, "%$s%d\n", "Nodes in Hidden Layer 6 = ",hé6n);
fprintf (fpl, "%$s%d\n","D.C.Bias Removal = ",dcbr);
fprintf (fpl, "$s%d\n", "Normalisation = ",norm) ;
fprintf (fpl, "$s%s\n", "Input Filename.lst = ",FI);
fprintf (fpl, "$s%d\n", "Total Number of Files = ",n files);
fprintf (fpl, "$s%d\n", "Record Length of Each Signal = ",r length);
fprintf (fpl, "%$s%d\n", "Mode (Train / Test) = ",mode);
fprintf (fpl, "$s%f%s\n", "Learning Rate = ",learnrate," (Decreases with
Epoch) ") ;
fprintf (fpl, "$s%s\n", "Weight Values Used / Stored = ",WF);
fprintf (fpl, "%$s\n","The following files were used in this Session:");

fpi = fopen(FI,"r");
for (index=0; index<n_ files; index++) /* index 1is the counter for
the file number */
{ /* step is used as the file counter in the later parts of the
Program */
fscanf (fpi, "%s", &f name) ;
fprintf (fpl, "$s\n", f name);
fpf = fopen (f name,"r");
for (count=0; count<i nodes; count++) /* count is the counter for
the data points in a file */
{ /* index is the counter used for referring to data points
later in the Program */
if (skip==1)
{
fscanf (fpf, "%$f", &érawdata[index] [count]) ;
}
else
{
fscanf (fpf, "%$f", &érawdata[index] [count]) ;
for (step=1; step<skip; step++)
{
fscanf (fpf, "$£f", &sum) ;

sum = 0.0;
}
}
fclose (fpf);

}
fclose (fpi);

if (dcbr == 1) {removebias (rawdata, n_files, i nodes);}
if (norm == 1) {normalise (rawdata, n_files, i nodes, 0.9, 0.1);}

/* 0.9 & 0.1 represent the upper & lower limits, to which data is
normalised */

switch (mode) // Start of switch mode - mode 1 is Training and mode
2 1s Testing
{
case (49):
{ /* Start of switch mode 1 - Start of Backpropagation
Training Phase */

/* The following program fragment reads the desired
output from
the file "desrdout.dat" */
fpt = fopen("desrdout.dat","r");
if (nnm == 53)
{
for (step=0; step<n files; step++)
{
fscanf (fpt, "%d", &des_out[step]);
}
}
if (nnm == 54)
{
fprintf (fpl, "$s\n", "Reading Values to be Predicted
(Desired Values)...");
for (step=0; step<n files; step++)
{
fscanf (fpt, "%f", &des[stepl]) ;
}

}
fclose (fpt);

/* The following loop initialises the weight matrix to
random values */
for (index=1; index<=h layers+l; index++) /* index spans
each layer from the i/p +1 to the o/p layer */
{

for (count=0; count<h nodes[index]; count++) /* count
spans each node the I layer */
{
for (loop=0; loop<=h nodes[index-1]; loop++) /*
loop spans each node the previous layer */
{
wt [index] [count] [loop] = rand()/32767.0;
}
}
}

fpt = fopen(efname,"w");

patt low = 35000.0;

fmax epoch = max epoch;

do { /* 'do' loop starts here */
epoch = epoch + 1; /* epoch counts each cycle */
fepoch = epoch;

lrate = learnrate* ((fmax epoch - fepoch + 1.0)/fmax_epoch);
patt _err = 0.0;
for (step=0; step<n files; step++) /* step spans all the files

for each epoch */
{
for (loop=0; loop<=i nodes; loop++)
{
if (loop==1i nodes)

{

ot[0][loop] = 1.0;
}
else
{
ot[0] [loop] = rawdatal[step][loopl; /* each file is

stored in ot[0] [loop] to facilitate computation later */
}
}
for (index=1; index<=h layers+l; index++) /* index spans
all the layers from the i/p +1 to the o/p layer for each step (file)
*/
{ /* start of the first hidden layer */
for (count=0; count<h nodes[index]; count++) /* count
spans all the nodes for each index (layer) */
{ /* starts for each layer */
ot [index] [count] = 0;
for (loop=0; loop<=h nodes[index-1]; loop++) /*
loop spans nodes in the previous layer */
{ /* starts for each node */
ot [index] [count] += ot[index-
1] [loop] *wt[index] [count] [loop];
} /* ends for each node */
ot [index] [count] = 1/(1 + exp (-
1.0*ot[index] [count])) ;
ft[index] [count] = ot[index] [count]* (1.0 -
ot [index] [count]) ;
} /* end for each layer */
} /* end of the last output layer */

for (loop=0; loop<h nodes[h layers+1l]; loop++)
{ /* Determines the Desired Output */
if (nnm == 53)
{
if (des_out[step] == loop)
{
flash = 0.95;
}
else
{
fprintf (fpl, "%$s\n","Setting 'flash' wvalues to
be the desired wvalues...(Classify)");
flash = 0.05;

lash = des[step]:;

}
patt err += (flash - ot[h layers+1][loop])*(flash
- ot[h layers+l] [loop]);
et[h layers+l][loop] = (flash -
ot[h layers+l] [loop])*ft[h layers+1l] [loop];
}
for (index=h layers; index>=1; index--) /*
Considering layers backwards, starting from the last hidden layer */
{
for (count=0; count<=h nodes[index]; count++)
/* count spans the nodes in the current layer */
{
et[index] [count] = 0.0;
for (loop=0; loop<h nodes[index+1];
loop++) /* loop spans the nodes in the NEXT layer here only ! */
{
et[index] [count] = et[index] [count] +
wt [index+1] [loop] [count] *et [index+1] [loop];
}
et [index] [count] =
et[index] [count]*ft[index] [count];
}
}

/%
At the end of this stage, we have 'et' (the error in the o/p) for all
the nodes, in
all the hidden layers and the output layer, for the file 'step'
The following lines update the weights, in all the layers, for the
file 'step'
*/
for (index=h layers+l; index>=1; index--) /*
Considering layers backwards, starting from the output layer */
{
for (count=0; count<h nodes[index]; count++)
/* count spans the nodes in the current layer */
{
for (loop=0; loop<=h nodes[index-1];
loop++) /* loop spans the nodes in the previous layer */
{
wt [index] [count] [loop] +=
lrate*et[index] [count] *ot [index-1] [loop];
}
}
}
/%
At the end of this stage, all the weights connecting all the layers
are updated for
file 'step'
*/

} /* End of one epoch - weights are updated ONCE for all the
files */

patt err = sqgrt(patt _err);
fprintf (fpt, "$f\n",patt _err);
if (patt_err < patt low)
{
patt low = patt err;
for (index=1; index<=h layers+l; index++) /* index spans
each layer from the i/p +1 to the o/p layer */

{
for (count=0; count<h nodes[index]; count++) /* count
spans each node the I layer */
{
for (loop=0; loop<=h nodes[index-1]; loop++) /*
loop spans each node the previous layer */
{
nw[index] [count] [loop] =
wt [index] [count] [loop];
}
}
}
}
} while ((patt err > 0.01) && (epoch < max epoch)); /* End of the
do loop */
fclose (fpt);

fprintf (fpl, "$s%d%s%f\n", "Completed Max Epochs...",epoch,"
",patt_err);

/* The following lines write the final weights in a file called
"owname" */

fpw = fopen (WF,"w");
for (index=1; index<=h layers+l; index++) /* index spans each layer
from the i/p +1 to the o/p layer */
{
for (count=0; count<h nodes[index]; count++) /* count spans each
node the I layer */
{
for (loop=0; loop<=h nodes[index-1]; loop++) /* loop spans
each node the previous layer */
{
fprintf (fpw, "$f\n",nw[index] [count] [loop]) ;
}
}

}
fclose (fpw) ;

fprintf (fpl, "$s\n", "Completed Writing the Weight Matrix...");

break;
} /* End of switch mode 1 - End of Backpropagation Training Phase */

case (50):
{ /* Start of switch mode 2 - Start of Backpropagation Testing
Phase */
fpw = fopen (WF,"xr");
fpt fopen (ocname, "w") ;
for (index=1; index<=h layers+l; index++) /* index spans each
layer from the i/p +1 to the o/p layer */
{
for (count=0; count<h nodes[index]; count++) /* count
spans each node the I layer */
{
for (loop=0; loop<=h nodes[index-1]; loop++) /* loop
spans each node the previous layer */
{
fscanf (fpw, "$f", &wt [index] [count] [loop]) ;
}

}
fclose (fpw) ;

for (step=0; step<n files; step++) /* step spans all the
files for each epoch */
{
for (loop=0; loop<=i nodes; loop++)
{
if (loop==1i_nodes)

{

ot[0] [loop] = 1.0;
}
else
{
ot[0] [loop] = rawdatal[step][loopl; /* each file is

stored in ot[0] [loop] to facilitate computation later */
}
}
for (index=1; index<=h layers+l; index++) /* index spans
all the layers from the i/p +1 to the o/p layer for each step (file)
*/
{ /* start of the first hidden layer */
for (count=0; count<h nodes[index]; count++) /* count
spans all the nodes for each index (layer) */
{ /* starts for each layer */
ot [index] [count] = 0;
for (loop=0; loop<=h nodes[index-1]; loop++)
{ /* starts for each node */
ot [index] [count] += ot[index-
1] [loop] *wt[index] [count] [loop];
} /* ends for each node */
ot[index] [count] = 1/(1 + exp (-
1.0*ot[index] [count])) ;
if (index==h layers+l)

(
{

if (nnm == 53)
{fprintf (fpt, "$s%d%s%d%s$f\n","File Number = ",step," Node =
",count," Output = ",ot[index] [count]);}

if (nnm == 54)

{fprintf (fpt, "%$f\n",ot [index] [count]) ;}
}
}
}
}
fclose (fpt);
break;
} /* End of switch mode 2 - End of Backpropagation Testing
Phase */
} /* Closing bracket of switch statement */

fprintf (fpl, "$s\n", "Freeing Memory....");
/* Freeing Various Memory Allocations - Begin Here */

free matrix(rawdata,O,n files-1,0,i nodes-1);

free f3tensor(wt,0,h layers+2,0,i nodes-1,0,1i nodes);
free f3tensor(nw,0,h layers+2,0,i nodes-1,0,1i nodes);
free matrix(ot,0,h layers+2,0,i nodes);

free matrix(ft,0,h layers+2,0,i nodes-1);

free matrix(et,0,h layers+2,0,1i nodes);

if (nnm == 53) {free ivector(des out,0,n files-1);}

if (nnm == 54) {free vector(des,0,n files-1);}
free ivector (h nodes,0,h layers+2);

/* Freeing Various Memory Allocations - Ends Here */
fprintf (fpl, "$s\n", "Completed Freeing Memory...");

fprintf (fpl, "$s\n", "Completed 'backprop' C Module");
fclose (fpl);

*cerr = 0;

} /* Closing bracket of the function backprop */

Code Listing 4.17 The feed-forward, error-backpropagation Neural Network

The following dialog screen capture shows the various parameters of the MLP Code
Input:

Meural Metworks - DESKPACK Software System .) ﬂ

Thype of Meural Neturorks

{* FeedForward Error Back Propagation NI

" Binary Hopfield NN

" Kohonen NN

Inpat File I Wiieight File I wreit. dat
Brovwrse... | Bromsrse... |
Input Nodes I'ﬁ Learnine Rate IU.4

Chatpat HModes I 1 Marirrm Epochs tuu]

Hidden Layers I1 [T Betmowe Bias [T Woesnalise
Made
* Classi " Predict
’7 BT = Trairing [Testing
% Train
|+ [R I
" Test
H1 Hz Ha H4 HS Ha
(o). Catice] | Help

Dialog 4.1 The Neural Networks Input Parameters Dialog

After the User fills up the details, this dialog passes on the input parameters to MLP
algorithm shown in the Code Listing 4.17.

Some of the salient features of this algorithm as coded in the Code Listing 4.17 can be
summatised as follows:

. This variant of the algorithm uses the online learning method

. The code can take up to six hidden units, each of which can take any number
of nodes

. The code can be used for either classification or prediction

. The given code uses the sigmoidal function as the squashing function

. The number of nodes in the input layer and the number of nodes in the
output layer can be fixed arbitrarily by the User

. Both the Learning Rate and the Number of Epochs (how many times the
data set — training set — passed through the network) can be fixed by the
User. The code has been tested even for 75000 epochs

. Since the MLP is a supervised learning algorithm, the correct outputs (or the
desired outputs) must be fed to the code using an external file called
“desrdout.dat”. If the number of nodes in the output layer is N, then the
“desrdout.dat” will have a column vector of N components (during the
training stage)

. The code is called from Prolog; the results are stored in files in the current
directory
. The code stops execution (during the training stage) after the specified

maximum number of epochs

. If the maximum number of epochs is fixed as N, then resultant weight matrix
(during the training stage) will have those set of values for which the actual
network outputs are closest to the desired outputs, i.e., when the Pattern
Error is minimum

4.9 Interpretation of Analysed Data

While most of the steps in pre-processing of data and established analysis methods can
be automated, the interpretation of results stage cannot be automated, but for a
straightforward go-no-go situation. Also, unlike pre-processing and analysis methods,
there are no established methods for interpreting the results, which flows directly from
one’s experience.

Clear understanding of (a) the analysis “path” taken by the data sets to arrive at the
results, (b) the objective of the task in hand, and (c) the underlying physical basis of the
data sets are essential for the correct interpretation of the results obtained. Particular
attention must be paid to the axes and their units.

Interpretation however, can be aided by decision supportt tools, that guide the User /
Expert away from known pitfalls, taking into consideration the pillars of established

concepts.

This forms the content of our next Chapter.

4.10 Questions

. Is there any difference between the way we human beings analyse “data” and
the way a Computer analyses data? List the differences.

In the case of the human beings what constitutes a data?

What are the types of data analysis methods in which the human being is
superior to a Computer? Give Examples. Why is it so?

What are the differences between a human being and a machine in the way
data is stored? Which is better? Why?

Is it possible to find a physical meaning for every feature extracted from a
signal data? Under what circumstances is it not possible to find a physical
meaning?

When a time-domain data is projected onto the frequency domain, the data
decomposes into sinusoidal components of different types. Are there other
ways (or “bases”) to represent time-domain data?

Why is it that the sinusoidal representation is more popular?

How to visualise partitioning of data in dimensions more than three?

How similar are the artificial neural networks (ANN) described in textbooks

with biological neural networks (BNN)? What are computational neural
networks (CNN)? How do they differ with respect to BNN?

Bibliography

1.

P.Kalyanasundaram, C.Rajagopalan, C.V.Subramanian, M.Thavasimuthu and
Baldev Raj, "Ultrasonic Signal Analysis for Defect Characterisation in Composite
Materials", British Journal of NDT, Vol. 33, No. 5, May 1991, pp.221-226.

P.Kalyanasundaram, C.Rajagopalan, Baldev Raj, O.Prabhakar and D.G.R.
Sharma, "High Sensitivity Detection and Classification of Defects in Acoustic
Weldments using Cluster Analysis and Pattern Recognition", Brit. J. of NDT,
Vol. 33, No. 6, June 1991, pp.290-297.

P.Kalyanasundaram, C.Rajagopalan, Baldev Raj, O.Prabhakar and D.G.R.Sharma,
"Detection of Small Defects in Austenitic Stainless Steel Weldments Using
Pattern Recognition and Cluster Analysis Approaches", J. of the Acoustical
Society of India, Vol. XVIII, Nos.3 & 4, November 1990, pp.244 - 250.

P.Kalyanasundaram, C.Rajagopalan and Baldev Raj, "Ultrasonic Signal Analysis
for defect characterisation in composite materials", Journal of the Acoustical
Society of India, Vol. XVII, Nos. 3 & 4, 1989, pp. 359-363.

P.Kalyanasundaram, C.Rajagopalan and Baldev Raj, "Some concepts in
elucidating characterisation of weak acoustic emission signals", Journal of the
Acoustical Society of India, Vol. XVII, Nos. 3 & 4, 1989, pp.364-369.

P.Kalyanasundaram, C.Rajagopalan, C.V.Subramanian, M.Thavasimuthu and
Baldev Raj, "Reliable applications of signal analysis methods for ultrasonic
evaluation of materials and components", J. of Pure and Applied Ultrasonics,
Vol:14, No:1, 1992, pp.13 - 20.

10.

11.

12.

13.

14.

15.

16.

17.

M.T.Shyamsunder, C.Rajagopalan, K.K.Ray and Baldev Raj, "A comparative
study of conventional and artificial neural network classifiers for eddy current
signal classification", INSIGHT, Vol. 37, No. 1, January 1995, pp. 26 - 30.

M.Thavasimuthu, C.Rajagopalan, P.Kalyanasundaram and Baldev Raj,
"Improving the Evaluation Sensitivity of Ultrasonic Pulse Echo Technique using
a Neural Network Classifier", NDT&E International, Vol. 29, No. 3, pp. 175 -
179, 1996.

C.V.Subramanian, M.Thavasimuthu, C.Rajagopalan, P.Kalyanasundaram and
Baldev Raj, "Ultrasonic Test Procedure for Evaluating Fuel Clad EndCap Weld
Joints of PHWRs", Materials Evaluation, Vol. 53, No. 11, November 1995, pp.
1290 - 1295.

C.Rajagopalan, Baldev Raj and P.Kalyanasundaram, "The Role of Artificial
Intelligence in Nondestructive Testing and Evaluation", INSIGHT, Vol. 38, No.
2, February 1996, pp. 118 - 123.

P.Mukherjee, P.Barat, T.Jayakumar, P.Kalyanasundaram, C.Rajagopalan, Baldev
Raj, "Acoustic Emission Studies On Welded And Thermally Treated Aisi 304
Stainless Steel During Tensile Deformation", Scripta Materialia, Vol.37, No.8, pp.
1193-1198, 1997.

M.Thavasimuthu, C.Rajagopalan, T.Jayakumar and Baldev Raj, "Effect of Front
Surface Roughness on Ultrasonic Contact Testing : A Few Practical
Observations", Materials Evaluation, November 1998, pp. 1302 - 1309.

M.T.Shyamsunder, C.Rajagopalan, B.Raj, S.K.Dewangan, B.P.C. Rao and
K.K.Ray, "Pattern Recognition Approaches for the Detection and
Characterisation of Discontinuities by Eddy Current Testing", Materials
Evaluation, Vol. 58, No. 1, January 2000, pp. 93 - 101.

P. Kalyanasundaram, C. K. Mukhopadhyay, C.Rajagopalan and Baldev Raj, "On-
line Prediction of Quality and Shear Strength of Spacer Pad Welds of Nuclear
Fuel Pins by Applying Cluster and Neural Network Analysis of Acoustic
Emission Signals", Accepted for publication in the Journal, Science &
Technology of Welding and Joining. (December 2003)

C.Rajagopalan, Baldev Raj and P.Kalyanasundaram, "A Soft Computing
framework for Fault Diagnosis", Information Sciences, Vol. 127, pp. 87 - 100,
2000. (Special Issue on Soft Computing).

P.Kalyanasundaram, C.Rajagopalan, Baldev Raj, "DMAC - A Versatile Tool for
1-D Pattern Analysis for Ultrasonic Signals", Insight, Vol. 46, No. 1, January
2004, pp. 37 - 43.

B.Venkataraman, C.Rajagopalan and Baldev Raj, Multilayered, Error-
backpropagated, Feed-forward Artificial Neural Network for Prediction of
Temperature and Strain Rate Generated, During Tensile Deformation, NDT & E
International.

18.

19.

20.

21.

22.

23.

24,

25.

206.

27.

28.

Baldev Raj, P.Kalyanasundaram, C.Rajagopalan, G.Vaidyanathan and
K.Swaminathan, "Detection and Characterisation of Bubbles, Suspensions and
Colloids in Water using Ultrasonic Signal Analysis", Proc. of 13th World
Conference on NDT, Brazil, October 1992, pp.1058-1064.

Baldev Raj, M.Thavasimuthu, C.V.Subramanian, P.Kalyanasundaram and
C.Rajagopalan, "Ultrasonic Evaluation of End Cap Weld Joints of Fuel Elements
of PHWRs using Signal Analysis methods", ibid., pp.1065-1070.

C.V.Subramanian, M.Thavasimuthu, C.Rajagopalan, "Ultrasonic evaluation of
longitudinal seam welded thin walled Hasteloy tube", Proc. of NDE 92, Vol. 11,
pp. 545-551.

C.Rajagopalan, P.Kalyanasundaram and Baldev Raj,"An Expert System to Aid
Ultrasonic Testing of Austenitic Welds", Proc. of NDE 92, Vol. 11, pp. 155-168.

C.Rajagopalan, Baldev Raj, and P.Kalyanasundaram, "Acoustic Emission
Monitoring for Nuclear Applications", presented at the first National Workshop
on Acoustic Emission (NAWACE-90), June 28-29, 1990, Sriharikota, Andhra
Pradesh.

Baldev Raj, P.Kalyanasundaram and C.Rajagopalan, "Emerging Trends in
Engineering Materials and Components Testing Using Acoustic Methods",
Proceedings of National Symposium on Acoustics, INSA-91), New Delhi.

C.Rajagopalan, B.Venkatraman and Baldev Raj, "An Expert System to aid
Radiography Testing", presented at the International Conference on Application
of Radiolsotopes and Radiation in Industrial Development ICARID-94), Feb. 7-
9, 1994, Bombay.

C.V.Subramanian, = M.Thavasimuthu, = Baldev Raj, = D.K.Bhattacharya,
P.Kalyanasundaram and C.Rajagopalan, "Ultrasonic Testing of Carbon Fibre
Composites", presented at the National Seminar on NDT and Inspection,
(NDTI-89), Feb. 89, National Physical Laboratory, New Delhi.

C.Rajagopalan, M.T.Shyamsunder, P.Kalyanasundaram, Baldev Raj and
G.Hariharan, "The Utility of Artificial Neural Networks in Nondestructive
Testing and Evaluation", Published in the Proceedings of the National
Conference on Neural Networks and Fuzzy Systems, 16 - 18, March, 1995, Anna
University, Madras, pp. 225 - 235.

C.Rajagopalan, M. T.Shyamsunder and Baldev Raj, "Characterisation of Eddy
Current Signals using a binary Hopfield Neural Network", Proceedings of the 8th
Asia-Pacific Conference on NDT, December 11 - 14, 1995, Taipei, Taiwan, pp.
547 - 557.

M.T.Shyamsunder, C.Rajagopalan, Baldev Raj and Mayur Deshpande,
"Characterisation of Eddy Current Signals Using a Boltzmann Machine",
communicated for presentation in the National Seminar on NDE (NDE-95),
New Delhi, November 1995.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

M.T.Shyamsunder, C.Rajagopalan and Baldev Raj, "EDDYEX - A Knowledge
Based System for Eddy Current Testing", ibid.

C.Rajagopalan, P.Kalyanasundaram and Baldev Raj, "Issues in Developing
Knowledge Based Systems for Nondestructive Testing", presented at the
International Conference in Trends in Industrial Measurements and Automation,
Madras, 3 - 7, January, 1996.

Baldev Raj and C.Rajagopalan, "Artificial Intelligence to Maximise Contributions
of Nondestructive Evaluation to Materials Science and Technology", Special
Session Paper delivered during the 14th World Conference on Nondestructive
Testing, New Delhi, India, Vol. 1, 47 - 57.

C.Rajagopalan, P.Kalyanasundaram and Baldev Raj, "Uncertainty Management in
Knowledge based systems for Nondestructive Testing - An example from
Ultrasonic Testing", ibid, Vol. 4, pp. 2127 - 2131.

C.Rajagopalan, P.Kalyanasundaram and Baldev Raj, "The Evolution of the Use
of Artificial Intelligence in NDT&E", presented at the National Seminar on
NDE (NDE-1994), Bombay, December 1994.

M.T.Shyamsunder, C.Rajagopalan, K.K.Ray, T.Jayakumar, P.Kalyanasundaram
and Baldev Raj, "Characterisation of Eddy Current Signals using Different Types
of Artificial Neural Networks", ibid, Vol. 3, pp. 1875 - 1879.

M.T.Shyamsunder, = C.Rajagopalan, K.K.Ray and P.Kalyanasundaram,
"Application of Neural Networks to Eddy Current Defect Characterisation in
Materials", poster presentation at the 51st ATM-NMD, Jamshedpur, November
1997.

M.T.Shyamsunder, S.K.Dewangan, C.Rajagopalan, K.K.Ray and Baldev Raj,
"Eddy Current Data Inversion using Neural Networks".

M.T.Shyamsunder, C.Rajagopalan, S.K.Dewangan and Baldev Raj, "Role of
Artificial Neural Networks for Defect Detection and Characterisation by Eddy
Current Testing", Proceedings of the National Seminar on Artificial Neural
Networks and Cognitive Systems (ANCS-98), Cochin University, September
1998.

C.Rajagopalan, Baldev Raj and P.Kalyanasundaram, "Knowledge-based Decision
Support Systems for NDT", presented during the National Seminar on NDE -
1999, Vadodara.

S.K.Dewangan, M.T.Shyamsunder, C.Rajagopalan, Baldev Raj, K.KRay,
T.Jayakumar and P.Kalyanasundaram, "Application of Artificial Neural Network
to Defect detection and characterization for Life Management", Proceedings of
the International Symposium on Materials Ageing and Life Management, 3-0,
October 2000, Kalpakkam, India, pp. 1329 - 1334.

C.Rajagopalan, Baldev Raj and P.Kalyanasundaram, "Synergism of NDE & IT: A
Generic Knowledge-Base System for Effective and Reliable NDE", Proc. of the

41.

42.

43.

44,

45.

406.

47.

48.

49.

50.

10th Asia-Pacific Conf. on NDT, Brisbane, Australia, 2001.
(http:/ /www.ndt.net/article/apcndtO1/papers/802/802.htm)

C.Rajagopalan, Baldev Raj and P.Kalyanasundaram, "Role of Information
Technology in Nondestructive Testing for Total Quality Management", accepted
for presentation at the 10th World Congress on Total Quality, 22nd - 24th
January 2001, New Delhi.

C.Rajagopalan, P.Kalyanasundaram and Baldev Raj, "Signal Analysis Basics for
Acoustic Emission Testing", 5th National Workshop on Acoustic Emission,
Satish Dhwan Space Center, SHAR, Sriharikota, 18 - 19 October 2002, pp.157 -
170.

A.S.Ramesh, C.Rajagopalan, R.Chellapandian, Hassan Sheikh,
P.Kalyanasundaram, Baldev Raj, "Evaluation of Stress Corrosion Cracks in an
inaccesible Lattice Tube Weld using Ultrasonic Signal Analysis - A Case Study",
presented at the NDE 2002 Symposium, December 5-7, 2002, Hotel Taj
Connemara, Madras, pp. 25 -26.

C.Rajagopalan, B.Venkatraman, T.Jayakumar, P.Kalyanasundaram, Baldev Raj,
"Multi-Layered Perceptron based Artificial Neural Network for the Prediction of
Temperature Generated during Tensile Deformation", ibid., pp. 80 -81.

C.Rajagopalan, P.Kalyanasundaram, Baldev Raj, "Assets and Infrastructure
Management System Software Framework", NDE 2003, Thiruvananthapuram,
11 - 13, December 2003, TP-78, pp.174 - 175.

P.Kalyanasundaram, C.Rajagopalan, Baldev Raj, "Eigenvalue Analysis for the
Classification of 1-d Signals: An Exploratory Review", ibid., TP-77, p.173.

C.Rajagopalan, B.Venkataraman, T.Jayakumar, P.Kalyanasundaram and Baldev
Raj, "A Novel Method for Automated Evaluation of Radiographic Weld Images",
To appear in the Proceedings of the 16th World Conference on NDT, August 30
- September 3, 2004, Montreal, Canada.

B.Venkataraman, C.Rajagopalan, and Baldev Raj, "Predicting Strain Rate During
IR Imaging of Tensile Deformation Using MLP-based ANN", To appear in the
Proceedings of the 16th World Conference on Nondestructive Testing, August
30 - September 3, 2004, Montreal, Canada.

C.Rajagopalan, "A Generic Knowledge-Based Systems' Architecture for Materials
Evaluation", Ph.D. Thesis, University of Madras, Chennai, December 2000.

C.Rajagopalan, http://deskpack.tripod.com/index.html

Glossary of Signal Processing Terms

A

Acquisition, Data — Data acquisition is a process of collecting and storing signals, for
further processing.

Aliasing — It is a phenomenon by which an analog signal when sampled below the
Nyquist rate of sampling, the information about the frequency components higher than
Nyquist frequency are lost and also these higher frequency components take on the
identify of lower frequency components.

Amplifier - A device, which increases the voltage or power level of a signal, introducing
as minimum a distortion as possible to the signal.

Amplifier, Lock-in — It is a selective kind of voltmeter based on detection by cross
correlation for measuring a D.C. or very slowly varying signal embedded in an
independent noise.

Amplitude — The instantaneous value of a signal at any given time.

Amplitude, Peak — The maximum value of a signal within a specified time interval, or
over a time record.

Analog-to-Digital Conversion — A process of sampling an analog signal at specified
intervals of time and representing sampled values as sequence of numbers. Also it is a
process of converting each sampled value into binary form, of finite resolution,
determined by the number of bits per sample.

Analysis, Real-Time — An analysis method where, the signals are processed, analysed
and evaluated for necessary action, as and when they area acquired.

A-Scan — A CRT (cathode ray tube) display in which the received signal amplitude is
shown as a vertical excursion from the horizontal sweep time trace.

Attenuation — A phenomenon by which energy is reduced when a signal passes through
a system/medium. It represents the loss in acoustic energy that occurs between any two
points of travel. This loss may be caused by absorption, reflection, scattering or other
material characteristics.

Attenuator — A device for causing or measuring attenuation.

Averaging, Frequency — A process of averaging frequency spectra of finite number of
successive repetitive signals (time records) so that magnitudes of corresponding
frequencies are added, vectorially.

Averaging, Time — A process of averaging successive repetitions of the signal records
(time records) so that the periodic signals add coherently, while the random element is
averaged to a small value, by virtue of its incoherence.

) B

Bandwidth — Bandwidth of a signal is the range of frequencies bounded by its upper
and lower cutoff frequencies in the frequency spectrum. Also see ‘Cutoff Frequency’.

Bias — The bias of an estimate is the difference between the estimate mean value and the
true mean of the estimated values.

B-Scan — A data presentation method typically applied to pulse echo ultrasonic testing.
It produces a 2-D view of a cross-sectional plane through the test object. The horizontal
sweep is proportional to the distance along the test object and vertical sweep is
proportional to the depth.

Cepstrum — It is a time function defined as wither the Fourier transform of the
logarithm of its power spectral density, or modulus square of this transform.

Clipping — Signal bit quantization, in two levels, positive or negative so that only the
algebraic sign of the signal is preserved.

Cluster — A group or a class of elements having one or many common properties.

Cluster Analysis — Study and extraction of information about and from the clusters, so
as to classify different clusters based on the information obtained above.

Cluster Classification — Grouping of cluster elements based on their properties.

Clustering — A process, in which a set of data is organized into groups that have strong
internal similarity.

Convolution — A process in which the output signal at time ‘t’ is the weighted sum of
past values of the input signal x(t). Mathematically, convolution of x(n) and h(n) can be
represented as

N-1

y@ = Yx@kh().

k=0

Convolution, Circular — Aliasing that can occur in the time domain when frequency
domain signals are multiplied. Each period in the time domain overflows into adjacent
periods.

Correlation, Auto — A process, which compares the function x(t) at time ‘t’" with its
value at time t-T. See also, Correlation Function, Auto.

Correlation, Cross — The sum of all products of two samples over entire record length,
of a signal such that the samples are separated by a search parameter 'm’ when expressed
as a function of ‘m’” mathematically,

+(N-1)
R, (m) = X2 (legn)y(n+m) , where ‘m’ is an integer.

m=-

This can also be viewed as a process which characterizes the relationship of one signal
x(t) at an instant ‘¢’ with another signal y(t) at an instant ‘t-7’.

Cotrelogram, Auto / Cross — A graphical representation of the auto / cross correlation
function with respect to the search parameter ‘m’.

Correlation Function, Auto

The sum of all products of two samples over the entire record length of a signal such
that the samples are separated by a search parameter ‘m’ when expressed as a function of
‘m’ mathematically.
+(N-1)
R(m) = X x(n)x(n+m) , where ‘m’is an integer.
"

m=- (N

Count, Ringdown — It is the number of threshold crossings of a signal, in specified
direction, during an interval.

Covariance Function, Auto — It is an autocorrelation function in which the process

variables are replaced by the deviation of the process variables with respect to their
means. Mathematically, this can be expressed as:

+(N-1)

¢ =2 [x(n)- K] [x(n+m) - Y

m=-(N-1)

Cross-talk — The unwanted signal leakage (acoustical or electrical) across an intended
barrier, such as leakage between the transmitting and receiving elements of a dual
transducer. Also called cross-noise or cross-coupling.

C-Scan — A data representation applied to pulse echo and transmission ultrasonic
testing. It yields a 2-D plan view of the object.

D

Damping — It is a process by which the signal amplitude is gradually reduced to zero.
Data — Representation of information in discrete form.

Data Length — Number of data points per record.

Decibel - It is the ratio of two values of voltage or power expressed in logarithmic scale
with a multiplication constant 20 or 10, respectively, expressed as :

Voltage Gain = 20 log (v/v,)
Power Gain = 10 log (p/p,)

Decimation — Reducing the sampling rate of a digitized signal, generally involves low-
pass filtering followed by discarding samples.

Decimation-in-Time -- It is the technique used for computing Fast Fourier
Transform, which results in two non-interleaved final sequence from the interleaved final
sequences from the interleaved time sequence.

Decimation-in-frequency — It is a technique used for computing Fast Fourier
Transform, which divides the time sequence into two non-interleaved sequences and

interleaves the values of the final.

Deconvolution — A process of expressing the impulse response of a linear system in
terms of its output and the parameters of the input.

Detection — A process attempted to extract an useful signal from the background noise,
which is superimposed on it.

Digital-to-Analog Conversion — This is an inverse process of Analog-to-Digital
Conversion, where a digitized input sequence is transformed into an output analog signal.

Digitization — A process of converting an analog signal into samples expressed as such
or in discrete amplitude.

Dispersion — See standard deviation.
Distortion — A phenomenon by which the signal characteristics are disturbed.
Distribution, Binomial — It is the statistical law of the discrete random wvariable
obtained by counting the number of occurrences (k) of an event, during finite number of
independent trials (n). Mathematically, the probability of occurrence of k’ events out of
‘n’ trials is given by
— n k n-k

Plon) = "Co p(1-p)
Where ‘p’ is the probability of occurrence of an event.
Distrubution , Gaussian — A random variable is said to follow Gaussian distribution if
it is a outcome of a physical process made up of many component process, none of

which is dominant over the other. Mathematically, the corresponding probability density
function can be given as

P(x) = [1/6 21] expl “*)?/26 2

Distribution, Normal — See Gaussian Distribution

Distribution, Poisson — It is a special case of the Binomial distribution where the
probability of occurrence of an event is very small and the number of independent trials
is large. Mathematically, the probability of occurrence of ‘k’ events out on ’n’ trials is
given by

p(,n) = x*Jexp[-x] ,where X’ is the mean occurrence of an event.
Domain — A space in which signal parameters/characteristics can be defined/processed
as a function of a certain variable of the domain.

Domain, Frequency — A space where signal parameters/characteristics can be defined
> q y p g
processed as a function of frequency.

Duration, Pulse — It is the time duration for which the pulse is above the threshold
value.

Dynamic Range — It is the difference in decibels between the overload level and the

minimum signal level (usually fixed by noise level or low level distortion or interference
or resolution level) in a system or sensor.

Ensemble — It is the experimental realization of a set of similar signals produced by the
same stochastic process.

Ensemble Averaging — The process of arriving at the average value existing at time ‘t’
or discrete variable ‘n’ summed over the ensemble and continued over the entire record

length.
Mathematically,

M
An) = (1/ M)axi(ﬂ)
where ‘M’ is the number of time records.

Error, Overflow — Error arising in the measuring process during acquisition, due to
overflow of the signal’s value, above a predefined level.

Error, Quantization — Error arising due to finite resolution of the sampling process.

Estimate — It is an outcome found by using certain rules or methods (called
‘estimators’), or known variables.

Filter — A device that minimizes any undesited components in the input signal so as to
deliver a signal with desired properties.

Filter Bank — A group of filters connected in series or parallel or both, wherein one or
more can be chosen at will.

Filter, Analog — A system that accepts an analog signal as its inputs and outputs an
analog signal with desired properties.

Filter, Anti-aliasing — An ideal low-pass filter with a bandwidth of the Nyguist
frequency.

Filter, Auto-regressive Moving Average (ARMA) — A digital filter having the
properties of both autoregressive filter and moving average filter. (See auto-regressive
and Moving Average). The general equation is given by

M

v = (1/20) [Zbs@h) - £ a,y(ak)]

Filter, Auto-regressive — A digital filter whose every sampled output depends on a
finite number of past output values and the present input value.

y(n) = -(1/20) [Z 2, y(n-k) | + bex(n

k=1
o

Filter, Band-Pass (Ideal) — A filter whose output is unchanged for input frequencies
above its lower cutoff frequency and below its upper cutoff frequency, removing other
frequencies. The range of frequencies between the lower and upper cutoff frequencies is
called the pass band.

Filter, Bessel — It is a class of low pass filters characterised by the property that the
group delay is maximally flat at the origin of the S-plane.

Filter, Butterworth — It is a class of low pass filters characterized by the property that
the magnitude characteristic is maximally flat at the origin of the S-plane.

Filter, Chebyshev - It is a class of low pass filters characterized by the property that
over a prescribed band of frequencies the peak magnitude of the approximation error is
minimized.

Filter, Digital — A system that accepts digital signal as its input and outputs a digital
signal with desired properties.

Filter, Elliptic — It is a class of low pass filters characterized by the magnitude response
that is equiripple in both the passband and stopband.

Filter, Finite Impulse Response (FIR) — An auto-regressive filter whose duration of
impulse response is finite.

Filter, High-Pass (Ideal) — A filter whose output is unchanged for input frequencies
above its cutoff frequency, removing the frequencies below the cutoff frequency.

Filter, Infinite Impulse Response (IIR) — An auto-regressive filter whose duration of
impulse response is infinite. Also called a recursive filter.

Filter, Matched — This is a particular case of a linear filter designed to optimize the
signal to noise ratio, when attempting to detect a signal, say x(t), of known shape and
duration “I” embedded in background noise.

Filter, Moving Average — A filter whose output depends only on a finite number of
present and past values of the input.
Mathematically, this is expressed as:

y() = (1/20) [X byx(n-k) |

Filter, Non-recursive - See FIR filters.
Filter, Recursive — See IIR filters.

Filter, smoothing — A filter, which removes the unwanted random roughness in the
signal caused by the noised.

Filter, Stop-Band — A filter whose output is unchanged for input frequencies below its
lower cutoff frequency and above its upper cutoff frequency, removing other
frequencies.

Fourier, Coefficients — Coefficients of the individual components of a Fourier series.
For a continuous time signal of duration “T’, its k™ coefficient (harmonic) is given by

x(k) = 1/1)] X(0) exp(§2m ke/T)de

Fourier Series — A representation of any periodic time signal in terms of its basic cosine
and sine components. Mathematically, the series can be expressed as:

0

x(t) = Zk)igk) exp (j2m kt/T).

Fourier Magnitude Spectrum — A plot of the Fourier coefficients representing the
magnitude of the harmonic components (Fourier Components) of a time signal as a
function of its frequency content. Also see amplitude spectrum and phase spectrum.

Fourier Transform — A transformation, which converts time domain data into
frequency domain data, resulting in amplitude and phase distribution with respect to
frequency. Alternately, it is a function, which describes the amplitude and phase of each
sinusoidal component.

Fourier Transform, Discrete — A Fourier transform of discrete time for main data into
discrete frequency domain data. The expression is given as:

N-1

X(k) = Z x(n) exp(-i2nnk/N).

n=0

Fourier Transform, Fast — An algorithm used to compute discrete. Fourier transform
using minimum memory space and time, for computation.

Fourier Transform, Inverse — A reverse process of Fourier transform, to convert
frequency domain data into the original time domain data. Mathematically, the expression
is given by:

N-1

x(n) = (1/N) T X(¥) exp(2mnk/N)

Frequency — It is the rate at which a periodic signal repeats itself.

Frequency Response — A complex function, which defines the operation of a linear
system as a function frequency.

Frequency, Cutoff (Lower and Upper) — The values of frequencies (Lower and
Upper) at which the voltage gain of the filter is down by 3db from its maximum value in
the pass band. Among these, the lower frequency is called the lower cutoff frequency and
the upper one, the upper cutoff frequency.

Frequency, Folding — See, Nyquist frequency.

Function Coherence — Coherence function is one which is a measure of the output
signal power portion, at frequency ‘£ that is due to the input signal. Also, this function
indicates, when its value is not unity, either the existence of additional noise, a nonlinear
relationship between the input [x(t)] and output [y(t)] , or that [x(t)] does not depend
upon excitation of [y(t)], solely. The expression for coherence function is given by,

2
Vxy® = s gl

s, | s,

Function, Demodulated Autocorrelation — The logarithm of the square of the auto
correlation function.

Function, Dirac impulse — A function whose integral with respect to time tends to
unity as the duration of the function “I”, tends to zero.

Function, Even — Any function whose value is not altered both in sign and magnitude
when the sign of the independent variable is reversed.

Function, Odd — Any function whose value is not altered in magnitude but changes sign
when the sign of the independent variable is reversed.

Function, Orthogonal — A function that gives a finite value for the weighted average of
the product of sine and sine or cosine and cosine components, if their frequencies and
phase shifts are identical and given a null result otherwise.

Function, Probability Density — A function which indicates how likely the dependent
variable (described by say, y’) is found in the band, say ‘y’ at a location y, in the overall
signal record.

Function, Probability Distribution — It is that function, that gives the area under the
probability Density function [p(x)] curve from minus infinity to value of interest , say X’
Mathematically expressed as,

X

p(x) = [pex) dx

Function, Sine — It is the ratio of sine function to its argument, given by

Sinc(x) = [sin(nx)]/ (mx)
Function, Transfer — Transfer function of a system is the frequency response of that
system, relating, the input and the output in the frequency domain.

Function, Windowing — It is a finite weighting sequence w(n), multiplied with the finite
sequence x(n), so as to minimise the effect of Gibb’s phenomenon.

FWHM - Full Width at Half-Maximum. A measure the width of a peak in a signal.

Usually used with Gaussian functions. The width of the peak is measured at half of the
peak amplitude.

G

Gain — It is the ratio of the output voltage level to the input voltage level, expressed in
decibels.

Gate — It is a rectangular window of adjustable length and position.

Ghost — An indication arising from certain combinations of pulse repetition frequency
and time base frequency.

Gibb’s Phenomena — The limitation of a Fourier series to converge at discontinuities is
Gibb’s phenomena.

Group Delay — Group delay of filter is a measure of the average, delay of the filter as a
function of frequency.

H

Hilbert Transform — Hilbert Transform of a function x(n), is the function’s
convolution with 1/mn.

He) = 2 x(ok) (1/7k)

Impulse — See Dirac Function.

Impulse Response — Total response of a system to Dirac impulse function, expressed
as a weighting function, h(t).

Interleaving — In the case of repetitive signals, sampling of the waveform can be done
over many periods by taking a certain sample point from each repetition and then
combining them into one sample series.

M

Mean — Average of a set of numerical data.

Method, Maximum Entropy — It is a non-linear spectral estimation method in which
among all the spectra that are consistent with the limited available data, the spectrum
corresponding to a random signal of maximum entropy (informational entropy) is
selected.

Method, Maximum Likelihood — It is a vector of parameter that are either non-
random but with unknown statistics, the estimation must be based on the sole a prior
knowledge of the conditional probability density p(x/a), of the obsetvation vectot, x,
depending on the parameter vector, a, and on the noise statistics. This distribution is
called likelihood function. The method of estimation of a vector a,; maximizing p(x/a) is
called the Maximum Likelihood Method.

Modulation — A process, in which a primary signal called the modulating signal,
modifies an auxiliary signal called the carrier to create a secondary or modulated signal.

Modulation, Amplitude — A modulation in which the amplitude of a carrier varies as a
function of the modulating signal. Mathematically represented as,

y(t) = [1+a(t)] Cosm t

Modulation, frequency — A modulation in which the phase of a carrier varies as a
function of the modulating signal.

Modulation Phase — A modulation in which phase of a carrier varies as a function of
the modulating signal.

Modulation, Pulse Code — A modulation where an analog signal is coded into a of
pulse.

N

Noise — A varying signal having no desirable information.

Noise, Background — The extraneous signals caused by random signal sources within
or exterior to the testing system.

Noise, Broadband — A noise whose power spectrum is wide.

Noise Flicker — It is a stochastic process whose power spectral density varies inversely
with frequency.

Noise Gaussian — A noise whose amplitude values follow a Gaussian distribution, over
long period of time.

Noise Random — A noise whose amplitude distribution follows no known distribution.

Noise, White — It is a stochastic process whose power spectral density is constant for
any value of frequency.

Nyquist Criteria — In order to avoid aliasing, any signal should be sampled during the
process of digitization, at a rate at least twice the Nyquist frequency.

Nyquist Frequency — Nyquist frequency is the highest of the individual frequency
components present in any signal (also called folding frequency).

Nyquist Rate — It is the sampling rate, which is twice the Nyquist frequency.

o

Offset Value — Level by which every data point is increased or decreased.

P

Peak-to-Peak Value — The level difference between the maximum positive and the
maximum negative amplitudes of a signal, within an interval.

Perseval Theorem — The total power contained in the fourier spectrum of a signal
equals that in the signal itself.

[x| de = I_Ix(f)\df

Pattern Recognition — It is the categorisation of input data into identifiable classes, via
the extraction of significant features of attributes of the data from a background of
irrelevant detail.

Phase — A relative position of observation of a signal with respect to a reference point.

Phase Angle — The value of phase expressed in terms of degrees of radians or gradients.

Phase Difference — The temporal shift observed between two signals expressed in
terms of a phase angle.

Power Spectral Density — See power Spectrum.

Power Spectrum — The power spectrum is the distribution of energy content of a
signal record, say x(t), with respect to its frequency content. Alternately, the
power spectrum is the Fourier transform of the auto correlation function. Or,
power spectrum can be defined as the self-conjugate product of its Fourier
Transform x(k). Mathematically expressed as,

S0 = x(9x'(l)
Power Spectrum, Auto - See Power Spectrum.
Power Spectrum, Cross — this is the Fourier transform of the cross-correlation function
of two signals, say x(n) and y(n). Alternatively, cross power spectrum is the conjugate

product of the Fourier Transforms x(k) and y(k) of the two signals x(n) and y(n) .
Mathematically, the cross power is expressed as,

Sy = x() y ()

Process Ergodic — It is a stochastic process exhibiting identical statistical averages and
time averages of the same degree and order.

Process Random — Random process is one whose outcome can be predicted only in a
probabilistic manner using statistical laws.

Process, Stationary — It is a stochastic process whose all statistical properties are time
invariant.

Process, Stochastic — See Random Process.

Rate, Pulse Repetition — It is the rate at which the transmitting pulse is generated or
applied to any system or probe.

Record Length — The number of data points used to represent a record. See Data
Length.

Resolution — The interval between successive sampling instances or the successive levels
of signal amplitude.

Rise Time (Instrument) — For an ideal square wave input, the instrument rise time is
the time taken by any measuring instrument to reach from 10 to 90% of the maximum
value of its output.

Rise Time (Pulse) — It is the time taken for the pulse to reach from 10 to 90% of its
peak amplitude.

Rise Time (Signal) — It is the time duration between the first threshold crossing and
the peak of the signal.

Root Mean Square (RMS) Value —The positive root of the mean square value of a

signal record. It is a measure of the power content of a signal record. The root mean
square value is given by the expression,

\ (1/N2§ | x(m)

S
S-Plane — It is a complex plane where the frequency response of a system is evaluated.

Sample-and-Hold — A process in which the instantaneous value of a signal is sampled
and is stored in analog form.

Sampling — Sampling is a process of examining a continuous function of time or any
other independent variable, at equal intervals of the Independent variable.

Sampling Frequency — See Sampling Rate.
Sampling Rate — Number of samples examined at specified intervals per unit time.
Sequency — One half of the average number of zero crossings per unit time intervals.

Signal — An electrical quantity or any other physical quantity which provides information
on the presence or change of a physical phenomenon.

Signal Analysis — A process of attempting to isolate the main components of interest of
a signal of complex shape in order to understand its nature and origin better.

Signal Processing — It is a technical discipline which, based on the methods and signal
and information theory, deals with the elaboration or interpretation of signals carrying
information with the resources of electronics, computer engineering and applied physics.

Signal Record — See time History.

Signal Synthesis — It is the opposite operation of signal analysis consisting of creating a
signal with desired properties by combining a set of elementary signals.

Signal, Analog — A signal which is characterised by continuous amplitude and time.

Signal, Analytic — A complex function, whose Fourier transform is the unilateral forms
of the Fourier transform of its real part.

Signal, Bandlimited — Signal whose frequency component are limited to a certain range
of frequencies.

Signal, Bounded — All physical signals whose amplitude cannot exceed certain limit
(often enforced by electronic processing devices).

Signal, Casual — A signal is said to be causal if its amplitude is zero, for any time, ‘t’ less
than zero.

Signal, Deterministic — It is a signal, which is characterized by an evolution that is
perfectly predictable by an appropriate mathematical model.

Signal, Digital — An ordered sequence of numbers generated by sampling a continuous
time (analog) waveform at discrete time intervals. Alternatively, a Digital Signal is one,
which is characterized by discrete amplitude and discrete time, represented by a sequence
of numbers (digits).

Signal, Discrete — See Digital Signal.

Signal, Energy — Energy of a signal over a period of time is the integral value of the
square of the signal amplitudes.

Signal, Ensemble — A set of time histories when each of them is referenced to an
identical commencement of time.

Signal, Non-casual — A signal which has non-zero value for at least one instant of time
‘t’ where ‘t’ is less than zero.

Signal, Non -periodic — It is a signal which does not obey a regular cyclical repetition
law, with a period.

Signal, Periodic — It is a signal, which obeys a regular, cyclical repetition law, with a
fixed and finite period.

Signal, Quantized — A signal, which is characterized by discrete amplitude and
continuous time.

Signal, Random — It is a signal, which has unpredictable behaviour and can generally be
described only through statistical observations.

Signal, Sampled — A signal, which is characterized by continuous amplitude and
discrete time.

Signal, Transient — A causal deterministic short-lived signal, which decays to zero value,
after a finite length of time.

Signal-to-Noise Ratio — It is a measure of extent of signal contamination by noise.

Signum — It is a function of time, such that its value is equal to 1 for time less than zero,
and +1 , otherwise.

Spectrum —Distribution of a certain characteristic parameter of interest of a signal, with
respect to its frequency content.

Spectrum, Amplitude — Distribution of amplitude information of a signal with respect
to its frequency content.

Spectrum, Continuous — A spectrum which contains a continuous range of frequency
components, whose values are however finite.

Spectrum, Crosspower Autopower Difference — It is the difference between the
crosspower (normalized to unit energy) of two signals (one called the reference signal
and the other test signal) and the autopower (normalized to unit energy) of the test
signal.

Spectrum, Line — A spectrum in which the number of frequency components and their
values are finite and discrete and are located at precise positions on the frequency axis.

Spectrum, Phase — Distribution of phase information of a signal with respect to its
frequency content.

Standard Deviation — The square root of the average of the squares of the
instantaneous deviations about the mean value of the signal record. Mathematically,

o = [1/NDIEZ & - 1

System, Stable — A system where for a bounded input sequence the output sequence is
also bounded. Also for such a system its impulse response has finite energy.

T

Threshold — It is a voltage reference level crossing, which a signal is detected for further
process or operation.

Time, Dead — It is any interval during data acquisition when the instrument or system is
unable to accept new data, for any reason.

Time History — A continuing but finite-length record of a process. Also, see Signal
Record.

Trigger Level — It is that voltage level of a signal or an external input, to an instrument,
which determines the instant at which data acquisition starts. Data acquisition may start
at the instant, or a finite time before (pre-trigger) or a finite time after (delay) the voltage
(of the signal or external input) crosses the above preset voltage level.

A\

Variance — A measure of scatter of a set of data, about its mean value and is desctribed as
the mean square about the mean alternately, variance of random variable is the central
moment of second degree. Variance is a mathematically expressed as:

/N - W

W

Window, Hamming — It is a class of finite weighting functions w(n) operated on a time
record, expressed as

W(n) = a+ (1..a)Cos(2nn/N)

for all n, greater than ‘0’ and less than ‘N-1", and zero elsewhere, where ‘a’ assumes a
value between zero and unity. Generally, a=0.54.

Window, Hamming — It is special case of Hamming window, where a=0.50.

Window, Rectangular — It is a windowing function where w(n) =1, for all ‘m’ where, 0
(N-1). ‘N’ is the data length.
Z

Z-plane — It is a complex plane in which the z-transform of a signal is studied.

Z-transform — Z-transform is the generalization of the Fourier transform such that,
these two transforms are identical on the unit circle; (Unit circle is a circle of unit radius
in the complex plane centred at (0,0) — Mathematically expressed as:

N-1

x(z) = 2 x(n)z™"

n=0

Symbols Used in the Glossary

x(t), y(t) Continuous time functions
x(n) Input Discrete Signal

y(n) Output Discrete Signal
h(n) Impulse Response

R, (m) Cross-correlation function
T Time Delay

P Power

N,M, n k,m,]1

pXx)

P(x)

p(k,n)

A(n)
a,, by, a0, abe
X(k), Y(k), X(f)

S

Xy

HQ
W(n)

X(z)

Voltage

Standard Deviation

Mean

Integers; Number of time records; Data length;
Indices for summation

Probability Density Function

Probability of occurrence of events
Probability fo occurrence of k’ events in ‘n’
trials

Ensemble Average

Constants

Fourier coefficients

Crosspower of two signal

Autopower of a signal
Coherence Function
Carrier Wave Frequency
Reference Power
Reference Voltage

Signal Duration

Hilbert Transform
Windowing Function
Z-Transform of a Signal
Autocovariance Function
Autocorrelation Function

Complex Variable

