AIMS Database Structure in SQL

Current as on 15" April 2004

The Assets and Infrastructure Management System (AIMS) software is also being ported to and
developed under Microsoft® SQL 2000 Setver.

The advantages of porting the Prolog-based internal databases to Microsoft® SQL 2000 Setver
(henceforth called SQL, in short) are many. Some of them are:

SQL is a production-grade relational database management system (RDBMS).
SQL is highly scalable and the databases can be distributed among different Setvers.

SQL can be easily accessed using the traditional Windows Forms, or using the browser-
based Web Forms, or even using Wireless, handheld and mobile devices.

The AIMS database, through SQL, can be made truly distributed even geographically.

While porting the AIMS database from Prolog to SQL, there are a few important points to be
remembered:

And so on.

The vatious databases of AIMS, currently stored as Prolog’s internal databases, have to be
converted to SQL Tables.

The presence of vatious lists, as constituents of the Prolog’s internal databases, should be
converted to separate Tables in SQL.

The various IDs present in the AIMS database should be converted into Primary and
Foreign Keys in SQL.

The “Name”, “Description” and “Notes” fields should declared as ‘varchar’ in SQL, instead
of the ‘string” declaration in Prolog.

The information within existing AIMS databases must be normalised for SQL Tables to
avoid data redundancy.

To start with, let us examine a small fragment of the AIMS database in Prolog and study how this
information is converted to SQL Tables. In the following code listing (Code Listing 1), the structures
of only the four prominent databases (DB) of AIMS, viz., assets, systems, components and parts, are
shown. For each database, the DB structure, its explanation and an example are given. The actual
database declarations are shown in bold.

GLOBAL DATABASE — assets /* Asset Decl aration */
/* Represents:
asset (Asset | D, Asset Nanme, Asset Descri pti on, Asset USI Nunber, Asset Seri al Nunber, Asset |
ncl usi onDat e, Asset | ncl usi onTi me, Asset URL, Li st OF Syst emsl nTheAsset, Li st of Evol uti on
aryCycl esAssoci at edWt hTheAsset, Li st Of Not esAssoci at edWt hTheAsset) */

asset (i d, nane, desc, usi, seri al no, date, tine, url, SLI ST, SLI ST, SLI ST)
/* Stored in: assets.dat file */

/* Asset
notes */

Exanpl e - has 3 systenms, 3 evocycles associated with the asset, and 3

/* Note that for the Systens, Evocycles and Notes, only the corresponding |Ds
are listed */
/* asset ("I Al","MyAsset","A Test

Asset”, [’

"I A1SY1", "I A1SY2", "I A1SY3"], ["I AILF1", " | AILF2", " | ALILF3"], [" | AINT1", " | AIN

T2", "1 AINT3"]) */

GLOBAL DATABASE - systens /* System Decl aration */
/* Represents:
syst en(Syst em D, Syst enNane, Syst enDescri pti on, Syst enlUSI Nunber, Syst enSeri al Nunber ,
Syst em ncl usi onDat e, Syst em ncl usi onTi me, Syst emJRL, Li st Of Conponent sl nTheSyst em Li
st of Evol uti onaryCycl esAssoci at edWt hTheSyst em Li st Of Not esAssoci at edW t hTheSyst em
) ¥l

sys(i d, nane, desc, usi, seri al no,date, time,url, SLI ST, SLI ST, SLI ST)
/* Stored in: systens.dat file */
/* System Exanple, which is the first System ("1 A1S1") of the Asset "IAl" */
/* Note that the exanple systemis own ID, is the same as the fist in the list of
systens, for the asset "IA1" */
/* systenm("I ALSY1", "MFirstSys","A Test
Systent, ["] ALSY1COL", "] AISY1CO2", "| ALSY1CC3"], ["1 ALSYLILF1", "1 ALSY1LF2","| ALSY1LF
3"], ["I ALSYINT1", "I ALSYINT2", " | ALSYINT3"]) */

/* Simlarly Conponents and Parts are listed as follows */
GLOBAL DATABASE — components /* Conponent Decl aration */
/* Represents:
conponent (Component | D, Conponent Name, Conrponent Descri pti on, Conponent USI Nunber , Conp
onent Seri al Nunber, Conponent | ncl usi onDat e, Conponent | ncl usi onTi e, Conponent URL, Li s
t Of Part sl nTheConponent, Li st of Evol uti onaryCycl esAssoci at edW t hTheConponent , Li st Of
Not esAssoci at edW t hTheConponent) */

conponent (i d, nane, desc, usi, seri al no,date, tine,url, SLI ST, SLI ST, SLI ST)
/* Stored in: conponents.dat file */
/* Conponent Exanple, for the first asset, first system first conmponent */
/* conponent ("1 A1ISY1COL", " MyFi r st Conp", " A Test
Component "™, ["1 ALSY1COLPAL", " | ALSY1COLPA2"], ["1 ALSY1COLLF1", "1 ALSY1COLLF2"], ["1 Al
SY1COLNT1", "I ALSY1COLNT2"]) */

GLOBAL DATABASE - parts /* Part Declaration */
/* Represents:
part (Part | D, Part Nane, Part Descri pti on, Part USI Nunber, Part Seri al Nunber, Part | ncl usi o
nDat e, Part | ncl usi onTi ne, Part URL, Li st of Evol uti onaryCycl esAssoci at edWt hThePart, Li
st OF Not esAssoci at edWt hThePart) */
part (i d, nane, desc, usi, seri al no, date, tinme, url, SLI ST, SLI ST)
/* Stored in: parts.dat file */
/* Part Exanple, for the first part of the first conponent of the first system
of the first asset */
/* part("] ALSYICOLPALl","FirstPart","A Test
Part",["] ALSY1ICOLPALILF1", "1 AISY1ICOLPALLF2"], ["] ALSY1ICOLPALINT1", "1 A1SY1COLPALNT2"

1) I

/[* Simlarly, all the other DB conponents are declared */

Code Listing 1 A small portion of the AIMS DB in Prolog (all lists are lists of strings; actual
declarations are shown in bold)

Based on the Code Listing 1, there are a few important features of the AIMS (Prolog) database worth
reviewing at this stage. Note that some of these features are a direct consequence of Prolog’s internal
database syntax and semantics, and are not specific to the design of the AIMS DB structure per se.

. The constituents of each DB (e.g., assets, systems and so on) are identified uniquely by an
ID (e.g., for a typical part, the ID could be | ALSY1COLPA1). Each ID is a STRI NG variable.
. For each such constituent, its branches are represented only by their IDs, as a list of IDs

(e.g., the Notes for a given part | AISYICOLPAl is represented by the ID list
["I ALSYICOLPALINT1", " | ALSY1COLPAINT2"] .

. These IDs are generated automatically by AIMS without any User intervention.

. IDs are automatically adjusted if a branch is moved, copied, added anew or deleted.

. These IDs provide the key link in the hierarchy of databases.

. No two IDs ate identical, throughout all the databases.

. The User (User, Manager or Administrator) of the AIMS software handles only the names
of the database constituents, leaving the AIMS system to handle the IDs.

. In AIMS, under the current scheme, no two names of the database constituents can be
identical — much like how no two files can have the same name within a folder or directory.

. The AIMS database is so structured that it is more hierarchical than relational.

. The structure of the AIMS database allows any or all of the branches to be empty. In fact, it
is enough if the ID field and the Name field are filled to create a valid DB constituent.

. There is practically no limit on the length of the STRI NG variable in any of AIMS DB fields

and this length need not be declared in the beginning.

. Similarly, there is no limit on the number of elements within a given list, and this number
need not be declared in the beginning. Each list can be anywhere between an empty list
(represented by []) to a list having “infinite” number of elements.

. It is possible to re-configure each AIMS DB on the fly (as it is being used by AIMS) in such
a way that those constituents used more frequently, are placed on top of the DB (using
assert a) for faster access.

So, any attempt to convert the existing AIMS DB structure into SQL Tables must take into
consideration all of these issues, or at least those features that directly impact the performance of the
AIMS software. Some the desirable properties of the SQL RDBMS Tables could be:

. Ease of Use.

. Data normalisation (avoiding repetition of data leading to potential errors) is the next
priority.

. No IDs to be entered at all by the User (as in AIMS Prolog version).

. Each database (Assets, Systems, Components, Parts, Lifecycles, Stages, etc.) could be a

single Table, each Table containing many individual constituents.

. Each constituent (e.g., a typical asset or a typical part) can have one user-defined identity
slot and one serial number slot (which could later be used for Search purposes).

. The primary identification mechanism of each constituent can be by the Primary Key of the
entity, which is the natural way to identify any item.

. Since each database is a separate Table, it must be possible to fix flexible security and
permissions to each of them.

With these aspects in mind, the SQL Tables for the four prominent databases of AIMS were designed
(Figures 1 to 4) as follows. In each Figure, the first part (a) shows the properties of the SQL Table, and
the second part (b) shows a few examples in each Table.

Table Properties - cDetailsAssets E |

General | Full-Text Inde:-:ingl
ﬁ M ame: cDetailzAzzets Permizzionz. .. |
Dwner: db
Create date: F430,/2003 3:44:03 P
Filegroup: FRIMARY
Fows: 3
Colurms:
E‘E-"' |ID |Name |Data Tupe |Size[... |Nulls |Defaull:|
% clDAzzet wvarchar 256 |
cissetM ame warchar 256 v
chzzetDescip varchar 1024 i
chzsetls] warchar 256 i
cozsetSenalMo warchar 286 i
cAzzettddedDate datetime 8 v
chzzetURL wvarchar 256 i =
“| | _'I—I
(] I Cancel | Sppli | Help |

Figure 1a Properties of the “assets” SQL Table

Take a moment to compare the fields described in Figure 1a with the Code Listing 1. Unlike in Prolog,
we need to fix the length of each field type right away! For example the first field cl DAsset , which is
the primary key field for this Table has been declared as type var char having a size 256. Since this is a
key field, this cannot take a NULL value and that has been set in the Table properties. The other fields
are cAsset Name (to represent the name of the asset), cAsset Descr p (description of the asset, having a
size of 1024), cAsset USI (the USI number of the asset), cAsset Seri al No (the serial number of the
asset), cAsset AddedDat e (the date on which the asset was added), cAsset URL (the URL of the asset if

any).

But where are the links to the Systems associated with each Asset, its Evolutionary Cycles and Notes? This is a major
difference between the Prolog version of the AIMS DB and its SQL counterpart. In this case, the
Primary Keys of the Assets SQL Table, make a direct reference to the appropriate Systems, in the
Systems SQL Table, (to the EvoCycles in the EvoCycles SQL Table and so on) as can be seen by
studying Figure 1b and Figure 2b. Consider the asset My First Asset’ in Figure 1b. It has an ID value
of IA1. Now refer Table 2b. There are three Systems IA1S1, IA1S2 and IA1S3 associated with the asset
‘My First Asset’ (IA1). Further branches of these Assets and Systems are so related, as one can observe
from the SQL Tables shown in Figures 3b and 4b.

While accessing a root and its branches, the SQL version of the AIMS software’s logic should then
consult these Tables in succession to arrive at the right constituent. Such access and modification of
SQL Tables will eventually be performed using a combination of ASP.NET and Internet Information
Setver (IIS), the mechanism of which would be discussed later in another document.

[cassetiame [cassetDescrp [cassetls] [cassetderialo [cAssetaddedDate [cAssetiRL

My First fisset First Example Asset <MLL = <NULL= <NULL= <NULL =
My Second Asset Second Example Asset <MULL = <MULL> <MULL> <MULL=
Third fsset Third Asset: Example <MLL = <MLL = <MLL = <MULL =

Figure 1b The “assets” SQL Table — Some Examples
Table Properties - cDetailsSystems E |
General | Full-Text Inde:-:ingl
&E Marme; cDetailzSyztems Permizzions. .. |
Dwner: dbo
Create date: F430,/2003 3:44:51 P
Filzgroup: FRIMARY
Fows: E
Colurnts:
Key [ID [Mame |Data Tupe |Sizel. |Mulls |Defaul] «
clDAgzet warchar 286 O
% clDSys warchar 286 1
cSpsMame warchar 256 v
cSpsDescrp varchar 1024 v
cSpsl S warchar 256 v
cSpsSenalMo varchar 286 i =
cSpstddedDate datetime 8 i -
1| | 3
(] I Cancel | Apply | Help |
Figure 2a Properties of the “systems” SQL Table
__|cIDdsset [cIogys [csyshiame | cSysDescrp [cyslisl | cSysSerialio |cSyshddediate [cgysURL
Lm IA151 My First System in Asset One Asset One's System One NULL= <NULL= <MNULL=> <MNULL >
_|Ial 18152 My Second Swsin Asset One Asset One's System Two NULL= <NULL= <MNULL=» <MULL >
1Al 18153 3wsThree in AssetOne fisset One's System Three <NULL: <MULL= <HULL= <HULL>
_|Ia2 18251 My First Sys in Asset Two fizset Two's System One NULL= <NULL= <MNULL=» <MNULL >
_|Iaz2 18252 My Second Swsin Asset Two Asset Two's System Two NULL= <NULL= <MNULL=> <MULL >
__|1a3 14351 3wsOne in AssetThree fisset Three's System One <NULL: <MULL= <MULL= <HULL>
*|
Figure 2b The “systems” SQL Table — Some Examples

Table Properties - cDetailsComponents |

General | Full-T ext Indexing I
&;ﬁ M ame: cDetailzComponents Permizzions. . |
Dwner: dbi
Create date: F430,/2003 34533 P
Filegroup: FRIMARY
Fiows: 2
Colurms:
ey |ID |Name |Data Tupe |Size[... |Nulls |Default -
clDSps varchar 256 O
% clDComp varchar 256 O
cCompM ame varchar 286 i
cCompDescp varchar 1024 W
cCaormpl Sl wvarchar 256 v
cCompSerialMo warchar 286 v b
cCompD ate datetime 8 v -
*I | _>I_I
(] I Cancel | Spply | Help |

Figure 3a Properties of the “components” SQL Table

clbGys |cIDCum|:| |cCum|:|Name |cCumpDescrp |cCum|3LISI |cCumpSeria|Nu |cCumpDate |cCDm|3LIFlL
| |I8151 IAISICY Complin Syslin Assetl Component Example <UL <MULL> =MULL> “NULL>
| |I8152 IA1S2C1 ComplinSys2 in Assebl Another Example <MULL > <MULL> =MULL> <ULz
12

Figure 3b The “components” SQL Table — Some Examples

Table Properties - cDetailsParts |

General | Full-T ext Indexing I
&;ﬁ M ame: cDetailzParts Permizzions. . |
Dwner: dbi
Create date: F430,/2003 3:46:02 P
Filegroup: FRIMARY
Fiows: 3
Colurms:
ey |ID |Name |Data Tupe |Size[... |Nulls |Default -
clDComp varchar 256 O
% clDPart varchar 256 O
cPartM ame warchar 256 i
cPartDescip varchar 1024 v
cPartl sl warchar 2586 i
cPartSenalMo warchar 286 v b
cPattddedDate datetime 8 v =
« I _>I_I
(] I Cancel | Apply | Help |

Figure 4a

Properties of the “parts” SQL Table

IA151C1
1815201

Figure 4b

|clDPart [cParthame | cPartDescrp | cPartLsT |Partserialio |cPartAddedDate | cPartURL |
[A151C1P1 PartlinCompl A New Part <MULL = <MULL = <MULL = <MULL =
IA151CIP2 PartZinCompl Another Part <MULL = <MULL = <MULL = <MULL =
IA152C1P1 PartlinCompl Third Part <MULL = <MULL = <MULL = <MULL =

The “parts” SQL Table — Some Examples

We can summarise the following observations from these Tables (Figures 1 to 4):

The Properties of each of these four prominent databases, represented here as SQL Tables,
have several columns each.

One column in each SQL Table, has been declared as the Primary Key, represented by the
symbol % .

In the case of the “assets” SQL Table, cl DAsset is the Primary Key (Figure 1a).

Note in Figure 1b the column represented by this Primary Key viz., cl DAsset has a
separate ID earmarked for each Asset. (There are three examples given in Figure 1b).

Unlike the case of the Prolog’s internal database declaration we saw above in Code Listing
1, note that the type of each of the Property in Figure 1a (and in all the Property Figures 2a,
3a and 4a), is not a STRING. It varies from property to property. For example, in the
Prolog’s case, even the date and time fields are STRINGS. Here in SQL Tables, these are
special types called dat et i me occupying a size of 8 bytes. Other fields are of type var char .

Each of the Property figures (Figures 1a, 2a, 3a and 4a) show which of the fields in each of
these SQL Tables can take a NULL value. These are equivalent to empty STRING values in
the Prolog scheme.

The equivalent of lists in the Prolog scheme, is the Table itself in the SQL scheme. As a list
can keep adding items to it, the SQL Table will add rows to it. The columns of the SQL
Table, which represent the fields, are fixed however.

In the case of Prolog’s internal database structure of AIMS, the relationship between assets
(“parent”) and systems (“child”), systems (“parent”) and components (“child”), etc. flowed
from the appropriate declaration of correct IDs. In the case of SQL Tables, notice that this
connection happens rather subtly as a combination of the Primary Keys of the “parents”
and the “children”. For example, consider Figure 2b — examples of “systems”. The
combination of cIDAsset and cIDSys define the unique relationship between assets
(“parent”) and systems (“child”). This happens for every parent-child relationship. These
relationships are schematically shown in Figure 5.

cDetailsComponents cDetailsSystems
cIDSys ﬂ] cIDAsset ﬂ
| @CIDCOH’ID -) —%‘CIDSYS (] —
] cCompName I cSysName
o cCompDescrp I cSysDescrp
] cCompUSI I cSysUsI
cCompSerialNo I cSysSeriallo
— cCompDate L L cSysAddedDate -
cDetailsParts cDetailsAssets
_cIDComp iI ' [cIDAsset ﬂ
_@cIDPart |cAssetName
[r— R
I cParthame] cAssetDescrp =
7cPartDescrp T |cAssetUSI
———0+|| _|cPartUSI " |cAssetSerialNo
I cPartSerialNo " |cAssetAddedDate -
L cPartAddedDate - — ﬁ
Figure 5 Schematic Relationship between the four prominent databases of AIMS in the SQL Scheme

Note that unlike in the case of the Prolog’s internal database scheme for AIMS, in the case
of SQL Tables, the Primary Keys — at least in this version — need to be entered manually by
the User.

As can be seen from the Properties figures (Figures 1a, 2a, 3a and 4a), we can set the
Permissions for each of these Tables — something that can be done even in the Prolog
scheme, if the DB is present in an NTFS partition.

Access to these Tables for creating new values, editing, moving and deleting values, one can
use an ASP.NET front-end, so that entire SQL DB is accessible across the Intranet or even
the Internet, with any browser / mobile device as the target.

In the case of the SQL version of the AIMS software, what could be a typical train of action from a
User’s point of view?

A User could
. first define an asset (adds a new entry to the Assets Table)
. adds a system to the asset (adds a new entry to the Systems Table)
. adds a component to the system (adds a new entry to the Components Table)
. adds a part to the component (adds a new entry to the Parts Table)
. adds another system to the asset (adds a second entry to the Systems Table)
. adds another asset (adds a second entry to the Assets Table)

and so on, all of which can be performed from a browser-like front-end.

