
1

The Universal Serial Bus from
Abstraction to Implementation

by Mohammed Fennich
Intel Corporation.

When a Universal Serial Bus (USB) device is
attached to or detached from a USB host, a set
of predetermined events take place. The USB
Specification, Rev. 1.0, explains these events
and dictates the requirements for both the
device and the USB host. The objective of this
paper is to shed some light on the USB
Specification section dealing with these events,
bringing them from an abstract level to a more
tangible and practical implementation level. In
addition to a USB overview, this article provides
clarifications on USB transactions,
attach/detach operations, and device
enumeration processes. The Intel 8x930 USB
microcontroller is used to illustrate the
implementation and the programming models
involved.

Introduction
The Universal Serial Bus technology comes
as a response to the increasing demands of
our computerized and automated life, and
the
need for flexible easy-to-use products.
Computer-telephone integration and video
conferencing through digital cameras and
computers have become a necessity in the
work place and are starting to make their
way into homes. These two interrelated

communication functions, along with a
number of standard PC peripherals, such as
keyboards, joysticks and mice, will benefit
from USB usage.

USB is a communication protocol that
supports serial data transfers between a USB
host computer and USB-capable peripherals.
The host serves as the master of the bus.
Data transfer is serial with two modes of
signaling: full-speed mode with a signaling
rate of 12 Mbs, and low-speed mode with a
signaling rate of 1.5 Mbs. The peripherals
perform as slaves connected either directly
to the host or through hubs, in a tiered star
topology, with a hub at the center of each
star as shown in Figure 1.

USB addresses issues such as connectivity to
the PC, ease-of-use, flexibility, and low-cost
implementations. This is in addition to the
“plug and play” feature which is one of the
main reasons behind the inception of USB.
With USB, users can connect or disconnect a
peripheral without having to reconfigure or
alter the setup, or be concerned with what

2

Figure-1 U S B system exam ple

plugs to use for their peripherals, because
the connection type is standardized. Also,
users don’t have to install an add-in card for
each peripheral they want to connect to their
PC.
Most or all of the functionality of the add-in
cards has been implemented in software. In
fact, the USB host PC is equipped with a
sophisticated software structure that
automatically and transparently loads drivers
corresponding to the plugged devices. This
makes it possible for users to plug their
peripherals to the PC without having to
power down or reboot the system.

The USB Host
USB hosts are PCs built around USB-
capable motherboards and are equipped
with USB software structure. On the
motherboard, the USB Serial Interface
Engine module is incorporated as part of the
USB host controller. Intel implements the
USB functionality as part of the PCI chip
set. The software structure is divided into
three sections:

• The host controller driver that
links the different host controller
implementations with the rest of
the USB software structure.

• USB system software that acts as a
layer between the host controller
and the client software.

• Client software that allows the
client to communicate with their
attached USB device through a set
of abstractions within the USB
software layers.

There is only one USB host on any USB
system. Using USB hardware and software
structures, the host acts as the master of the
bus. It acknowledges the attachment and
removal of devices and initiates the
enumeration process and all subsequent
USB transactions along the bus, and is
responsible for collecting status and activity
statistics and controlling the electrical
interface between the host controller and the
USB device.

The USB Cable
The USB cable consists of four wires. Two
wires (D+ and D-), are used for actual
information transfer using differential
signaling. The two other wires are used for
power--Vbus and ground--Gnd. Low-cost,
unshielded cables are usually used for
devices using the 1.5Mbs low-speed USB
rate. Peripherals using the 12Mbs rate
require shielded cable.

3

A USB cable should have an A type plug on
one end for upstream connections (towards
the USB host), and a B type plug on the
other end for downstream connections
(towards the peripheral). In order to
eliminate customer confusion and illegal
connections, type A and B connectors are
not interchangeable. The USB specification
provides the mechanical characteristics for
both connectors.

All downstream ports have pull down
resistors on both the D+ and D- positions.
Full-speed devices should have a pull-up
resistor for the D+ wire and low-speed
devices should have the pull-up resistor for
the D- wire. These resistors cause different
voltage levels to occur between the D+ and
D- lines. This implementation allows the
host to sense attach and detach operations
and determine what speed the connected
peripheral will support.

The USB Peripherals
USB peripherals (devices) act as slaves on
the bus and are of two types: hubs and
functions. A hub typically consists of a hub
controller and a repeater. Each hub converts
a single attachment point into multiple
attachment points. For example, a hub can
have one upstream connector and 4
downstream ports to which other hubs
and/or functions can be attached. Functions
are PC peripherals like mice, keyboards,
joysticks, cameras, etc. For practical reasons,
hubs can be incorporated inside keyboards
and monitors to allow the user to connect a
USB peripheral. All USB devices, hubs, and
functions must be USB specification
compliant in order to be recognized by the
host.

In general, USB devices consist of three
components:

• A Serial Interface Engine (SIE),
implemented in silicon. It is
responsible for the transmission and
reception of USB structured data.

• A hardware and firmware

combination responsible for data
transfer between the SIE and the
device endpoints and their
corresponding pipes.

• The third element corresponds to the

actual capability or functionality that
the device brings to the system (e.g.,
keyboard functionality)

 An endpoint is the ultimate source or sink
of data on the USB peripheral. At the
implementation level, it can be thought of as
a set of memory locations to which data can
be written, or read from depending on the
direction of the data flow.

A pipe is a software association to the
endpoint on the USB host. At the
implementation level, pipes can be thought
of as software channels using function calls
within the USB system software in order to
send information to their associated
endpoints.

Any simultaneously attached peripherals
will share the USB bandwidth through a
host-scheduled token-based protocol. When
the host broadcasts a token over the bus, a
device that detects a match with its address
(in the token) responds to the host.

The USB Protocol
The USB host keeps the bus constantly
active by sending a start of frame (SOF)
packet every 1ms. The available bus
bandwidth is shared between simultaneously
connected devices within the 1ms time
interval. In general, USB transactions
consists of up to three packets: a token

4

packet, a Data Packet and a handshake
packet. Figure 2 shows the different packet
formats. Each packet has a packet ID (PID)
that specifies its type. A transaction starts
when the host controller sends a token
packet with a device address, and endpoint
number, the direction of data transfer, and
the type of the pipe supported. The
addressed device selects itself by decoding
its address from the token. If the direction

field in the token indicates that the host is
asking for data, then the device responds
with a data packet, otherwise, the host
follows up with the data packet. In general,
after the data is received, the destination
(host or device) sends a handshake packet .
A handshake packet can either be an ACK,
NAK, or a STALL. (Refer to the USB
Specification, Rev. 1, for more details.)

HandshakePID

8 bits

DataPID CRC16

16 bits

DATA

0-1023 bytes8 bits

ADDRPID

8 bits 7 bits

ENDP

4 bits

CR C5

5 bits

Token

Fram e Num berPID

8 bits 11 bits

CR C5

5 bits

Start of Frame

Figure-2 Packet Formats

The USB Data Transfer Categories
USB data exchange takes place between the
host software and a particular device
endpoint. Information flows either in a
bidirectional or unidirectional manner. The
host initiates the data transfer and exchanges
data with each endpoint independently from
the others.

Four types of transfers are supported by
USB: control, interrupt, isochronous, and
bulk.

1. Control transfers are supported by a
bidirectional communication flow. These
transfers are mainly used to interrogate and
configure the device at connection.
However, they can be used in

implementation-specific ways by client
software drivers. At the protocol level,
control transfers consist of a setup token
stage and a status (handshake feedback)
stage with a possible data stage in between.
All peripheral devices have to support
control transfers. The host assumes that
endpoint 0 is used in association with the
control pipe.

2. Interrupt transfers are supported by a
unidirectional communication flow. These
type of transfers are used for peripheral
devices like mice, keyboards and joysticks.
Because the USB host is the master in all
USB systems, it cannot be interrupted. This
implies that the actual interrupts caused by
the peripherals are polled. In other words,

5

the peripherals don’t really interrupt the
host. This is usually transparent to the end-
user but developers have to take it into
account.

At the USB protocol level, interrupt
transfers start with an IN token initiated by
the host. The peripheral responds with a
NAK if there is no new interrupt information
to return. If a new interrupt is pending the
function returns the information as a data
packet. The host responds with an ACK if
the data was received with no errors and
does not respond if the data was erroneous .
If the interrupt endpoint is stalled, it returns
a STALL indicating that host software
intervention is required.

3. Isochronous transfers are supported by a
unidirectional communication flow. The
direction of the flow can either be from the
endpoint to the host, or from the host to the
endpoint. This implies that two endpoints
are required on peripherals that need to use
both directions, or two pipes have to be
associated with the same endpoint.

At the protocol level, isochronous transfers
start with an IN or an OUT token, issued by
the host, depending on the direction of
communication (in the pipe) used and its
corresponding endpoint. For example, in the
case of an IN token, the function returns
data. In the case of an OUT token, the host
follows up with data. For isochronous
transfers there are no handshakes or retries.
This implies that inaccurate data will be lost.
This type of implementation makes sense
when you consider a phone or speakers as
the peripherals using isochronous transfers.

4. Bulk transfers are supported by a
unidirectional communication flow. The
direction of the flow can either be from the
endpoint to the host or from the host to the
endpoint. This implies that two endpoints, or
two pipes used with the same endpoint, are

required on peripherals that need to use both
directions.

At the protocol level, bulk transfers consist
of three phases: token, data, and handshake.
In the case of a stall condition there is no
data phase and the transaction is reduced to
a token and a handshake.

Except for control transfers, data is usually
transported through a pipe between a
memory buffer associated with the client
software on the USB host and an endpoint
on the USB device. Each endpoint has
specific capabilities that are chosen by the
device designer. The choice of these
characteristics establishes a pipe associated
with the particular endpoint. However, the
same endpoint can be used for two pipes.

Attach Operation
Immediately after a device is attached to the
USB host, the host controller is alerted of the
attachment(s) by way of the voltage change
on the D+ and D- lines. The host considers
this a port status change. The device is then
considered in the attached state. If the host
is in suspend mode, the attachment of the
device will wake it up.

Once the host detects that a device is
connected, it determines the exact port it is
connected to and enables it. The host then
issues a reset signal to the device which lasts
for at least 10 ms. After the 10ms period
elapses, the port is considered enabled.

Devices that are performing a function at the
time of attachment cannot sustain a reset,
however, the USB specification requires it.
In order to find a solution to this dilemma,
the Intel 8x930 USB microcontroller
implements an optional split reset feature.
This feature allows the microcontroller side
of the chip to continue executing code
allowing the device to function while the

6

USB side of the chip detects the USB reset
and responds to it.

After the reset sequence, the host can
provide the device, hub, or function, with up
to 100mA of power through the Vbus/Gnd
lines. At this point, the device is considered
to be in the powered state. It should be noted
that self-powered devices will not require
the 100mA power from the bus, even during
the attachment sequence. In order to limit
power consumption during connection time,
the core of the 8x930 USB microcontroller
starts at a low frequency rate of 3 MHz
instead of a rate of 12 MHz. The developer
is given the option to switch the frequency
of the core at any time without
compromising the USB rate.

The device sequentially changes states from
the disconnected to attached, fully reset, and
powered state, and becomes ready to
respond to commands from the host. The
host will use the default address (address 0)
to communicate with the device and start the
enumeration process.

Enumeration Process
The bus enumeration process consists of an
interrogation sequence through which the
USB host acquires information from the
connected device, gives it a unique address,
and assigns it a configuration value . The
process takes four steps:

Step 1: The host issues a Get_Descriptor
command to the device through the default
address using the control pipe. The device
then provides information about itself, such
as device class, vendor id, maximum packet
size for endpoint-0, etc.

Step 2: The host sends a unique address in a
data packet to the device using the
Set_Address command. The device, under
the control of the 8x930 firmware, gets the

address through endpoint 0 and stores it in a
special function register.

Step-3: The hosts requests and reads the
device configuration descriptor using the
Get_Configuration command. The device
responds with information about the number
of interfaces and endpoints, endpoint
transfer type, packet size and direction,
maximum power requirements, power
source, etc.

Step-4: The last step of the enumeration
process is handled using the
Set_Configuration command through which
the host assigns a configuration value to the
device.

After the enumeration process is complete,
the device is configured and ready for USB
data transmit and receive transactions. When
the host enumerates the device the
information gathered is passed on to the host
system software. The system software either
recognizes the device and loads the
corresponding device driver, or prompts the
user to provide a device driver for the
application. After the device driver is loaded
the device can start performing its intended
function (e.g., mouse) until it is detached
from the host.

Detach Operation
Immediately after a device is detached from
a USB host port, specific voltage changes on
the D+ and D- lines alert the host of the
action. The host then disables the port
through the USB host controller. The USB
system software (part of the operating
system) acknowledges the removal of the
device and frees up any host resources the
device was using. For example, the host will
reclaim the bus bandwidth the device was
using. If the device is bus-powered, the host
reclaims the power and makes it available to
other devices.

7

The detached device will stop providing any
capability to the USB host but will continue
providing its stand-alone function if
applicable. For example, when a USB
telephone is disconnected from the host, it
will continue to provide phone services. The
USB specification does not provide any
conditions or requirements for detached
devices, however, USB devices should be
designed with dynamic connect/disconnect
operations in mind.

At the firmware level, this is done by
implementing a wait-loop within the USB
code at which the USB controller (8x930)
pauses if not executing any function-related
code. The developer can pause the controller
at the wait-loop, after all USB registers and
endpoints are initialized, or have the
initialization code ready to execute
immediately after the reset signal is sent by
the USB host.

If the disconnected device is a hub, then all
the devices attached to the hub become
detached, and the host reclaims all the
resources these devices were using.

Programming model using the 8x930
The 8x930 USB microcontroller consists of
an eight bit microcontroller core with on-
chip memory and peripherals plus an on-
chip USB module. The 8x930 supports all
four types of USB data transfers: control,
isochronous, interrupt, and bulk. The user
can select the number of endpoint pairs and
whether USB reset is separate from chip
reset. Data transfers with the host are made
to or from endpoint pairs on the USB
module. Each endpoint pair has a transmit
FIFO and receive FIFO data buffer.
Depending on the application and the data
transfer type, the user can choose from a set
of different FIFO sizes supported.

Transmit FIFOs are written by the CPU, then
read by the function interface unit for

transmission. Receive FIFOs are written by
the function interface unit following
reception, then read by the CPU.

The hub version of the 8x930 provides a
USB interface for a PC peripheral and
provides USB hub capabilities, permitting
the connection of additional PC peripherals
or hubs. It provides four external
downstream ports and one internal
downstream port.

Operation of the USB module is controlled
through the use of special function registers
(SFRs). There are SFRs associated with the
function interface and others associated with
the hub operations. The developer has
accessibility to these SFRs and is
responsible for configuring the device
functionality by putting the right values (bits
and bytes) in the relevant SFRs. This is done
through initialization routines the device
needs to execute at start up.

Because the 8x930 incorporates a USB
module in silicon, USB device designers
don’t have to worry about developing
firmware to emulate the USB protocol.
Developers only have to initialize the USB
module to the specific configuration they
need the peripheral to function at.

In addition to the initialization routines, the
USB peripheral programming model for the
8x930 can be divided into three sections:
enumeration code, transmit and receive
routines, and application code. Designers
are responsible for developing enumeration
code so that the device can respond to the
USB host enumeration commands
(Get_Descriptor, Set_Address,
Get_Configuration, and Set_Configuration).

The transmit operation requires three steps.
The firmware is responsible for pre-transmit
data preparation and post transmission data
management. The actual data transmission is

8

done by the function interface hardware of
the USB module. The receive operation
takes two steps. The firmware is responsible
for post data receive management. The data
is received through the function interface
hardware of the USB module.

The last part of the firmware on the
peripheral corresponds to the capability that
the peripheral adds to the USB host. For
instance, if the peripheral is a keyboard, then
the designer is responsible for developing
key-scan routines and other keyboard
management functions.

	Introduction
	The USB Host
	The USB Cable
	The USB Peripherals
	The USB Protocol
	The USB Data Transfer Categories
	Attach Operation
	Enumeration Process
	Detach Operation
	Programming model using the 8x930

