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Introduction to the Internet Protocols

This document is a brief introduction to TCP/IP, followed by advice on what to read for more
information.  This  is  not  intended  to  be a complete description.  It can give you a reasonable idea of
the capabilities of the protocols. But if you need to know any details of the technology, you will want to
read the standards yourself. Throughout the text, you will find references to the standards, in the form of
"RFC" or "IEN" numbers. These are document numbers. The final section of this document tells you how
to get copies of those standards.

1. What is TCP/IP?

TCP/IP is a set of protocols developed to allow cooperating computers to share resources across a
network. It was developed by a community of researchers centered around the ARPAnet. Certainly the
ARPAnet is the best-known TCP/IP network. However as of June, 87, at least 130 different vendors had
products that support TCP/IP, and thousands of networks of all kinds use it.

First some basic definitions. The most accurate name for the set of protocols we are describing is the
"Internet protocol suite". TCP and IP are two of the protocols in this suite. (They will be described
below.)  Because TCP and IP are the best known of the protocols, it has become common to use the term
TCP/IP or IP/TCP to refer to the whole family. It is probably not worth fighting this habit. However this
can lead to some oddities. For example, I find myself talking about NFS as being based on TCP/IP, even
though it doesn't use TCP at all. (It does use IP. But it uses an alternative protocol, UDP, instead of TCP.
All of this alphabet soup will be unscrambled in the following pages.)

The Internet is a collection of networks, including the Arpanet, NSFnet, regional networks such as
NYsernet, local networks at a number of University and research institutions, and a number of military
networks. The term "Internet" applies to this entire set of networks. The subset of them that is managed
by the Department of Defense is referred to as the "DDN" (Defense Data Network). This includes some
research-oriented networks, such as the Arpanet, as well as more strictly military ones.  (Because much
of the funding for Internet and DDN can sometimes seem equivalent.)  All of these networks are
connected to each other. Users can send messages from any of them to any other, except where there are
security or other policy restrictions on access.  Officially speaking, the Internet protocol documents are
simply standards adopted by the Internet community for its own use. More recently, the Department of
Defense issued a MILSPEC definition of TCP/IP. This was intended to be a more formal definition,
appropriate for use in purchasing specifications. However most of the TCP/IP community continues to
use the Internet standards. The MILSPEC version is intended to be consistent with it.

Whatever it is called, TCP/IP is a family of protocols. A few provide "low-level" functions needed for
many applications. These include IP, TCP, and UDP. (These will be described in a bit more detail later.)
Others are protocols for doing specific tasks, e.g. transferring files between computers, sending mail, or
finding out who is logged in on another  computer.   Initially TCP/IP was used mostly between
minicomputers or mainframes. These machines had their own disks, and generally were self-contained.
Thus the most important "traditional" TCP/IP services are:

  - file transfer. The file transfer protocol (FTP) allows a user on any computer to get files from another
computer, or to send files to another computer. Security is handled by requiring the user   to specify a
user name and password for the other computer. Provisions are made for handling file transfer between
machines with different character set, end of line conventions, etc. This is not quite the same thing as
more recent "network file system" or "netbios" protocols, which will be described below. Rather, FTP is a
utility that you run any time you want to access a file on another system.  You use it to copy the file to
your own system. You then work with the local copy.  (See RFC 959 for specifications for FTP.)

  - remote login.  The network terminal protocol (TELNET) allows a user to log in on any other computer
on the network. You start a remote session by specifying a computer to connect to. From that time until
you finish the session, anything you type is sent to the other computer.  Note that you are really still
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talking to your own computer. But the telnet program effectively makes your computer invisible while it
is running. Every character you type is sent directly to the other system. Generally, the connection to the
remote computer behaves much like a dialup connection. That is, the remote system will ask you to log
in and give a password, in whatever manner it would normally ask a user who had just dialed it up. When
you log off of the other computer, the telnet program exits, and you will find yourself talking to your own
computer. Microcomputer implementations of telnet generally   include a terminal emulator for some
common type of terminal. (See RFC's 854 and 855 for specifications for telnet.  By the way, the telnet
protocol should not be confused with Telenet, a   vendor of commercial network services.)

  - computer mail. This allows you to send messages to users on other computers.  Originally, people
tended to use only one or two specific computers. They would maintain "mail files" on   those machines.
The computer mail system is simply a way for you to add a message to another user's mail file.  There are
some problems with this in an environment where microcomputers are used. The most serious is that a
micro is not well suited to receive computer mail.  When you send mail, the mail software expects to be
able to open a connection to the addressee's computer, in order to send the mail. If this is a
microcomputer, it may be turned off, or it may be running an application other than the mail system. For
this reason, mail is normally handled by a larger system, where it is practical to have a mail server
running all the time. Microcomputer mail software then becomes a user interface that retrieves mail from
the mail server.  (See RFC 821 and 822 for specifications for computer mail. See RFC 937 for a protocol
designed for microcomputers to use in reading mail from a mail server.)

These services should be present in any implementation of TCP/IP, except that micro-oriented
implementations may not support computer mail. These traditional applications still play a very
important role in TCP/IP-based networks. However more recently, the way in which networks are used
has been changing. The older model of a number of large, self-sufficient computers is beginning to
change.  Now many installations  have  several  kinds  of  computers,  including microcomputers,
workstations, minicomputers, and mainframes.  These computers are likely to be configured to perform
specialized tasks. Although people are still likely to work with one specific computer, that computer will
call on other systems on the net for specialized services. This has led to the "server/client" model of
network services.  A server is a system that provides a specific service for the rest of the network. A
client is another system that uses that service.  (Note that the server and client need not be on different
computers. They could be different programs running on the same computer.)  Here are the kinds of
servers typically present in a modern computer setup. Note that these computer services can all be
provided within the framework of TCP/IP.

  - network file systems.  This allows a system to access files on another computer in a somewhat more
closely integrated fashion than FTP. A network file system provides the illusion that disks or other
devices from one system are directly connected to other systems.  There is no need to use a special
network utility to access a file on another system. Your computer simply thinks it has some extra disk
drives. These extra "virtual" drives refer to the other system's disks.  This capability is useful for several
different purposes. It lets you put large disks on a few computers, but still give others access to the disk
space. Aside from the obvious economic benefits, this allows people working on several computers to
share common files.  It makes system maintenance and backup easier, because you don't have to worry
about updating and backing up copies on lots of different machines.  A number of vendors now offer
high-performance diskless computers. These computers have no disk drives at all. They are entirely
dependent upon disks attached to common "file servers".  (See RFC's 1001 and 1002 for a description of
PC-oriented  NetBIOS  over  TCP.   In the workstation and minicomputer area, Sun's Network File
System is more likely to be used.  Protocol specifications for it are available from Sun Microsystems.)
  - remote printing. This allows you to access printers on other computers as if they were directly attached
to yours. (The most commonly used protocol is the remote lineprinter protocol from Berkeley Unix.
Unfortunately, there is no protocol document for this. However the C code is easily obtained from
Berkeley, so implementations are common.)
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  - remote execution.  This allows you to request that a particular program be run on a different computer.
This is useful when you can do most of your work on a small computer, but a few tasks require the
resources of a larger system. There are a number of different kinds of remote execution. Some operate on
a command by command basis. That is, you request that a specific command or set of commands should
run on some specific computer. (More sophisticated versions will choose a system that happens to be
free.)  However there are also "remote procedure call" systems that allow a program to call a subroutine
that will run on another computer.  (There are many protocols of this sort. Berkeley Unix contains two
servers to execute commands remotely: rsh and rexec.  The man pages describe the protocols that they
use. The user-contributed software with Berkeley 4.3 contains a "distributed shell" that will distribute
tasks among a set of systems, depending upon load. Remote procedure call mechanisms have been a topic
for research for a number of years, so many organizations have implementations of such facilities. The
most widespread commercially-supported remote procedure call protocols seem to be Xerox's Courier
and Sun's RPC. Protocol documents are available from Xerox and Sun. There is a public implementation
of Courier over TCP as part of the user-contributed software with Berkeley 4.3.  An implementation of
RPC was posted to Usenet by Sun, and also appears as part of the user-contributed software with
Berkeley 4.3.)

  - name servers.  In large installations, there are a number of different collections of names that have to
be managed.  This includes users and their passwords, names and network addresses for computers, and
accounts. It becomes very tedious to keep this data up to date on all of the computers. Thus the databases
are kept on a small number of systems. Other systems access the data over the network. (RFC 822 and
823 describe the name server protocol used to keep track of host names and Internet addresses on the
Internet.  This is now a required part of any TCP/IP implementation. IEN 116 describes an older name
server protocol that is used by a few terminal servers and other products to look up host names. Sun's
Yellow Pages system is designed as a general mechanism to handle user names, file sharing groups, and
other databases commonly used by Unix systems.  It is widely available commercially.  Its protocol
definition is available from Sun.)

  - terminal servers. Many installations no longer connect terminals directly to computers.  Instead they
connect them to terminal servers. A terminal server is simply a small computer that only knows how to
run telnet (or some other protocol to do remote login). If your terminal is connected to one of these, you
simply type the name of a computer, and you are connected to it. Generally it is possible to have active
connections to more than one computer at the same time. The terminal server will have provisions to
switch between connections rapidly, and to notify you when output is waiting for another connection.
(Terminal servers use the telnet protocol, already mentioned. However any real terminal server will also
have to support name service and a number of other protocols.)

  - network-oriented window systems.   Until  recently,  high-performance graphics programs had to
execute on a computer that had a bit-mapped graphics screen directly attached to it. Network window
systems allow a program to use a display on a different computer. Full-scale network window systems
provide an interface that lets you distribute jobs to the systems that are best suited to handle them, but
still give you a single graphically-based user interface. (The most widely-implemented window system is
X. A protocol description is available from MIT's Project Athena. A reference implementation is
publically available from MIT. A number of vendors are also supporting NeWS, a window system
defined by Sun. Both of these systems are designed to use TCP/IP.)

Note that some of the protocols described above were designed by Berkeley, Sun, or other organizations.
Thus they are not officially part of the Internet protocol suite.  However they are implemented using
TCP/IP, just as normal TCP/IP application protocols are. Since the protocol definitions are not considered
proprietary, and since commercially-support implementations are widely available, it is reasonable to
think of these protocols as being effectively part of the Internet suite.  Note that the list above is simply a
sample of the sort of services available through TCP/IP.  However it does contain  the majority of the
"major" applications.  The other commonly-used protocols tend to be specialized facilities for getting
information of various kinds, such as who is logged in, the time of day, etc. However if you need a
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facility that is not listed here, we encourage you to look through the current edition of Internet Protocols
(currently RFC 1011), which lists all of the available protocols,  and  also  to  look  at some of the major
TCP/IP implementations to see what various vendors have added.

2. General description of the TCP/IP protocols

TCP/IP is a layered set of protocols. In order to understand what this means, it is useful to look at an
example. A typical situation is sending mail. First, there is a protocol for mail. This defines a set of
commands which one machine sends to another, e.g. commands to specify who the sender of the message
is, who it is being sent to, and then the text of the message. However this protocol assumes that there is a
way to communicate reliably between the two computers. Mail, like other application protocols, simply
defines a set of commands and messages to be sent. It is designed to be used together with TCP and IP.
TCP is responsible for making sure that the commands get through to the other end. It keeps track of
what is sent, and retransmitts anything that did not get through. If any message is too large for one
datagram, e.g. the text of the mail, TCP will split it up into several datagrams, and make sure that they all
arrive correctly. Since these functions are needed for many applications, they are put together into a
separate protocol, rather than being part of the specifications for sending mail.  You can think of TCP as
forming a library of routines that applications can use when they need reliable network communications
with another computer. Similarly, TCP calls on the services of IP. Although the services that TCP
supplies are needed by many applications, there are still some kinds of applications that don't need them.
However there are some services that every application needs. So these services are put together into IP.
As with TCP, you can think of IP as a library of routines that TCP calls on, but which is also available to
applications that don't use TCP.  This strategy of building several levels of protocol is called "layering".
We think of the applications programs such as mail, TCP, and IP, as being separate "layers", each of
which calls on the services of the layer below it.  Generally, TCP/IP applications use 4 layers:

  - an application protocol such as mail

  - a protocol such as TCP that provides services need by many

   applications

  - IP, which provides the basic service of getting datagrams to

   their destination

  - the protocols needed to manage a specific physical medium, such

   as Ethernet or a point to point line.

TCP/IP is based on the "catenet model". (This is described in more detail in IEN 48.) This model assumes
that there are a large number of independent networks connected together by gateways.  The user should
be able to access computers or other resources on any of these networks.  Datagrams will often pass
through a dozen different networks before getting to their final destination. The routing needed to
accomplish this should be completely invisible to the user. As far as the user is concerned, all he needs to
know in order to access another system is an "Internet address". This is an address that looks like
128.6.4.194. It is actually a 32-bit number. However it is normally written as 4 decimal numbers, each
representing 8 bits of the address. (The term "octet" is used by Internet documentation for such 8-bit
chunks. The term "byte" is not used, because TCP/IP is supported by some computers that have byte sizes
other than 8 bits.) Generally the structure of the address gives you some information about how to get to
the system. For example, 128.6 is a network number assigned by a central authority to Rutgers
University. Rutgers uses the next octet to indicate which of the campus Ethernets is involved. 128.6.4
happens to be an Ethernet used by the Computer Science Department.  The last octet allows for up to 254
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systems on each Ethernet. (It is 254 because 0 and 255 are not allowed, for reasons that will be discussed
later.) Note that 128.6.4.194 and 128.6.5.194 would be different systems. The structure of an Internet
address is described in a bit more detail later.

Of course we normally refer to systems by name, rather than by Internet address. When we specify a
name, the network software looks it up in a database, and comes up with the corresponding Internet
address. Most of the network software deals strictly in terms of the address. (RFC 882 describes the name
server technology used to handle this lookup.)

TCP/IP is built on "connectionless" technology.  Information is transfered as a sequence of "datagrams".
A datagram is a collection of data that is sent as a single message. Each of these datagrams is sent
through the network individually. There are provisions to open connections (i.e. to start a conversation
that will continue for some time).  However at some level, information from those connections is broken
up into datagrams, and those datagrams are treated by the network as completely separate.  For example,
suppose you want to transfer a 15000 octet file. Most networks can't handle a 15000 octet datagram.  So
the protocols will break this up into something like 30 500-octet datagrams. Each of these datagrams will
be sent to the other end.  At that point, they will be put back together into the 15000-octet file. However
while those datagrams are in transit, the network doesn't know that there is any connection between them.
It is perfectly possible that datagram 14 will actually arrive before datagram 13.  It is also possible that
somewhere in the network, an error will occur, and some datagram won't get through at all. In that case,
that datagram has to be sent again.

Note by the way that the terms "datagram" and "packet" often seem to be nearly interchangable.
Technically, datagram is the right word to use when describing TCP/IP. A datagram is a unit of data,
which is what the protocols deal with. A packet is a physical thing, appearing on an Ethernet or some
wire. In most cases a packet simply contains a datagram, so there is very little difference.  However they
can differ. When TCP/IP is used on top of X.25, the X.25 interface breaks the datagrams up into 128-byte
packets.  This is invisible to IP, because the packets are put back together into a single datagram at the
other end before being processed by TCP/IP. So in this case, one IP datagram would be carried by several
packets. However with most media, there are efficiency advantages to sending one datagram per packet,
and so the distinction tends to vanish.

2.1 The TCP level

Two separate protocols are involved in handling TCP/IP datagrams. TCP (the "transmission control
protocol") is responsible for breaking up the message into datagrams, reassembling them at the other end,
resending anything that gets lost, and putting things back in the right order. IP (the "internet protocol") is
responsible for routing individual datagrams. It may seem like TCP is doing all the work. And in small
networks that is true. However in the Internet, simply getting a datagram to its destination can be a
complex job.  A connection may require the datagram to go through several networks at Rutgers, a serial
line to the John von Neuman Supercomputer Center, a couple of Ethernets there, a series of 56Kbaud
phone lines to another NSFnet site, and more Ethernets on another campus. Keeping track of the routes to
all of the destinations and handling incompatibilities among different transport media turns out to be a
complex job.  Note that the interface between TCP and IP is fairly simple. TCP simply hands IP a
datagram with a destination.  IP doesn't know how this datagram relates to any datagram before it or after
it.

It may have occurred to you that something is missing here. We have talked about Internet addresses, but
not about how you keep track of multiple connections to a given system. Clearly it isn't enough to get a
datagram to the right destination.  TCP has to know which connection this datagram is part of. This task
is referred to as "demultiplexing." In fact, there are several levels of demultiplexing going on in TCP/IP.
The information needed to do this demultiplexing is contained in a series of "headers". A header is
simply a few extra octets tacked onto the beginning of a datagram by some protocol in order to keep
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track of it. It's a lot like putting a letter into an envelope and putting an address on the outside of the
envelope. Except with modern networks it happens several times. It's like you put the letter into a little
envelope, your secretary puts that into a somewhat bigger envelope, the campus mail center puts that
envelope into a still bigger one, etc. Here is an overview of the headers that get stuck on a message that
passes through a typical TCP/IP network:

We start with a single data stream, say a file you are trying to send to some other computer:

  ......................................................

TCP breaks it up into manageable chunks. (In order to do this, TCP has to know how large a datagram
your network can handle.  Actually, the TCP's at each end say how big a datagram they can handle, and
then they pick the smallest size.)

  ....  ....  ....  ....  ....  ....  ....  ....

TCP puts a header at the front of each datagram. This header actually contains at least 20 octets, but the
most important ones are a source and destination "port number" and a "sequence number".  The port
numbers are used to keep track of different conversations. Suppose 3 different people are transferring
files. Your TCP might allocate port numbers 1000, 1001, and 1002 to these transfers. When you are
sending a datagram, this becomes the "source" port number, since you are the source of the datagram.  Of
course the TCP at the other end has assigned a port number of its own for the conversation. Your TCP
has to know the port number used by the other end as well. (It finds out when the connection starts, as we
will explain below.) It puts this in the "destination" port field. Of course if the other end sends a datagram
back to you, the source and destination port numbers will be reversed, since then it will be the source and
you will be the destination. Each datagram has a sequence number. This is used so that the other end can
make sure that it gets the datagrams in the right order, and that it hasn't missed any.  (See  the  TCP
specification for details.) TCP doesn't number the datagrams, but the octets. So if there are 500 octets of
data in each datagram, the first datagram might be numbered 0, the second 500, the next 1000, the next
1500, etc. Finally, I will mention the Checksum.  This is a number that is computed by adding up all the
octets in the datagram (more or less - see the TCP spec). The result is put in the header. TCP at the other
end computes the checksum again. If they disagree, then something bad happened to the datagram in
transmission, and it is thrown away. So here's what the datagram looks like now.
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  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Source Port            |            Destination Port    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Sequence Number                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Acknowledgment Number                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Data  |      |U|A|P|R|S|F|                                 |
  | Offset | Reserved  |R|C|S|S|Y|I|      Window               |
  |    |      |G|K|H|T|N|N|                                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Checksum      |     Urgent Pointer                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  your data ... next 500 octets                                |
  |  ......                           |

If we abbreviate the TCP header as "T", the whole file now looks like this:

  T....  T....  T....  T....  T....  T....  T....

You will note that there are items in the header that I have not described above.  They are generally
involved with managing the connection. In order to make sure the datagram has arrived at its destination,
the recipient has to send back an "acknowledgement". This is a datagram whose "Acknowledgement
number" field is filled in. For example, sending a packet with an acknowledgement of 1500 indicates that
you have received all the data up to octet number 1500. If the sender doesn't get an acknowledgement
within a reasonable amount of time, it sends the data again.  The window is used to control how much
data can be in transit at any one time. It is not practical to wait for each datagram to be acknowledged
before sending the next one.  That would slow things down too much. On the other hand, you can't just
keep sending, or a fast computer might overrun the capacity of a slow one to absorb data. Thus each end
indicates how much new data it is currently prepared to absorb by putting the number of octets in its
"Window" field. As the computer receives data, the amount of space left in its window decreases. When
it goes to zero, the sender has to stop. As the receiver processes the data, it increases its window,
indicating that it is ready to accept more data. Often the same datagram can be used to acknowledge
receipt of a set of data and to give permission for additional new data (by an updated window). The
"Urgent" field allows one end to tell the other to skip ahead in its processing to a particular octet. This is
often useful for handling asynchronous events, for example when you type a control character or other
command that interrupts output. The other fields are beyond the scope of this document.

2.2 The IP level

TCP sends each of these datagrams to IP. Of course it has to tell IP the Internet address of the computer
at the other end. Note that this is all IP is concerned about. It doesn't care about what is in the datagram,
or even in the TCP header. IP's job is simply to find a route for the datagram and get it to the other end.
In order to allow gateways or other intermediate systems to forward the datagram, it adds its own header.
The main things in this header are the source and destination Internet address (32-bit addresses, like
128.6.4.194), the protocol number, and another checksum.  The source Internet address is simply the
address of your machine. (This is necessary so the other end knows where the datagram came from.) The
destination Internet address is the address of the other machine.  (This is necessary so any gateways in the
middle know where you want the datagram to go.) The protocol number tells IP at the other end to send
the datagram to TCP. Although most IP traffic uses TCP, there are other protocols that can use IP, so you
have to tell IP which protocol to send the datagram to. Finally, the checksum allows IP at the other end to
verify that the header wasn't damaged in transit. Note that TCP and IP have separate checksums. IP needs
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to be able to verify that the header didn't get damaged in transit, or it could send a message to the wrong
place. For reasons not worth discussing here, it is both more efficient and safer to have TCP compute a
separate checksum for the TCP header and data. Once IP has tacked on its header, here's what the
message looks like:

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Version| IHL |Type of Service|     Total Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Identification    |Flags|   Fragment Offset               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Time to Live |  Protocol  |     Header Checksum             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Source Address                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Destination Address                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | TCP header, then your data ......                             |
  |                                |

If we represent the IP header by an "I", your file now looks like this:

  IT....  IT....  IT....  IT....  IT....  IT....  IT....

Again, the header contains some additional fields that have not been discussed. Most of them are beyond
the scope of this document.  The flags and fragment offset are used to keep track of the pieces when a
datagram has to be split up.  This can happen when datagrams are forwarded through a network for which
they are too big. (This will be discussed a bit more below.) The time to live is a number that is
decremented whenever the datagram passes through a system. When it goes to zero, the datagram is
discarded. This is done in case a loop develops in the system somehow. Of course this should be
impossible, but well-designed networks are built to cope with "impossible" conditions.

At this point, it's possible that no more headers are needed. If your computer happens to have a direct
phone line connecting it to the destination computer, or to a gateway, it may simply send the datagrams
out on the line (though likely a synchronous protocol such as HDLC would be used, and it would add at
least a few octets at the beginning and end).

2.3 The Ethernet level

However most of our networks these days use Ethernet. So now we have to describe Ethernet's headers.
Unfortunately, Ethernet has its own addresses. The people who designed Ethernet wanted to make sure
that no two machines would end up with the same Ethernet address. Furthermore, they didn't want the
user to have to worry about assigning addresses.  So each Ethernet controller comes with an address
builtin from the factory. In order to make sure that they would never have to reuse addresses, the Ethernet
designers allocated 48 bits for the Ethernet address. People who make Ethernet equipment have to
register with a central authority, to make sure that the numbers they assign don't overlap any other
manufacturer. Ethernet is a "broadcast medium". That is, it is in effect like an old party line telephone.
When you send a packet out on the Ethernet, every machine on the network sees the packet. So
something is needed to make sure that the right machine gets it. As you might guess, this involves the
Ethernet header.  Every Ethernet packet has a 14-octet header that includes the source and destination
Ethernet address, and a type code. Each machine is supposed to pay attention only to packets with its
own Ethernet address in the destination field. (It's perfectly possible to cheat, which is one reason that
Ethernet communications are not terribly secure.) Note that there is no connection between the Ethernet
address and the Internet address. Each machine has to have a table of what Ethernet address corresponds
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to what Internet address. (We will describe how this table is constructed a bit later.) In addition to the
addresses, the header contains a type code. The type code is to allow for several different protocol
families to be used on the same network. So you can use TCP/IP, DECnet, Xerox NS, etc. at the same
time.  Each of them will put a different value in the type field. Finally, there is a checksum.  The Ethernet
controller computes a checksum of the entire packet. When the other end receives the packet, it
recomputes the checksum, and throws the packet away if the answer disagrees with the original. The
checksum is put on the end of the packet, not in the header. The final result is that your message looks
like this:

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Ethernet destination address (first 32 bits)                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Ethernet dest (last 16 bits) |Ethernet source (first 16 bits)        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Ethernet source address (last 32 bits)                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Type code                                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | IP header, then TCP header, then your data                   |
  |                                                        |
    ...
  |                                                        |
  |  end of your data                                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Ethernet Checksum                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

If we represent the Ethernet header with "E", and the Ethernet checksum with "C", your file now looks
like this:

  EIT....C  EIT....C  EIT....C  EIT....C  EIT....C

When these packets are received by the other end, of course all the headers are removed.  The Ethernet
interface removes the Ethernet header and the checksum. It looks at the type code. Since the type code is
the one assigned to IP, the Ethernet device driver passes the datagram up to IP. IP removes the IP header.
It looks at the IP protocol field.  Since the protocol type is TCP, it passes the datagram up to TCP. TCP
now looks at the sequence number.  It uses the sequence numbers and other information to combine all
the datagrams into the original file.

The ends our initial summary of TCP/IP. There are still some crucial concepts we haven't gotten to, so
we'll now go back and add details in several areas. (For detailed descriptions of the items discussed here
see, RFC 793 for TCP, RFC 791 for IP, and RFC's 894 and 826 for sending IP over Ethernet.)

3. Well-known sockets and the applications layer

So far, we have described how a stream of data is broken up into datagrams, sent to another computer,
and put back together. However something more is needed in order to accomplish anything useful. There
has to be a way for you to open a connection to a specified computer, log into it, tell it what file you
want, and control the transmission of the file.  (If you have a different application in mind, e.g. computer
mail, some analogous protocol is needed.) This is done by "application protocols". The application
protocols run "on top" of TCP/IP. That is, when they want to send a message, they give the message to
TCP.  TCP makes sure it gets delivered to the other end. Because TCP and IP take care of all the
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networking details, the applications protocols can treat a network connection as if it were a simple byte
stream, like a terminal or phone line.

Before going into more details about applications programs, we have to describe how you find an
application. Suppose you want to send a file to a computer whose Internet address is 128.6.4.7.  To start
the process, you need more than just the Internet address. You have to connect to the FTP server at the
other end.  In general, network programs are specialized for a specific set of tasks. Most systems have
separate programs to handle file transfers, remote terminal logins, mail, etc. When you connect to
128.6.4.7, you have to specify that you want to talk to the FTP server.  This is done by having "well-
known sockets" for each server.  Recall that TCP uses port numbers to keep track of individual
conversations.  User programs normally use more or less random port numbers. However specific port
numbers are assigned to the programs that sit waiting for requests. For example, if you want to send a
file, you will start a program called "ftp". It will open a connection using some random number, say
1234, for the port number on its end. However it will specify port number 21 for the other end. This is the
official port number for the FTP server. Note that there are two different programs involved. You run ftp
on your side. This is a program designed to accept commands from your terminal and pass them on to the
other end. The program that you talk to on the other machine is the FTP server.  It is designed to accept
commands from the network connection, rather than an interactive terminal. There is no need for your
program to use a well-known socket number for itself. Nobody is trying to find it. However the servers
have to have well-known numbers, so that people can open connections to them and start sending them
commands. The official port numbers for each program are given in "Assigned Numbers".

Note that a connection is actually described by a set of 4 numbers: the Internet address at each end, and
the TCP port number at each end. Every datagram has all four of those numbers in it. (The Internet
addresses are in the IP header, and the TCP port numbers are in the TCP header.) In order to keep things
straight, no two connections can have the same set of numbers. However it is enough for any one number
to be different.  For example, it is perfectly possible for two different users on a machine to be sending
files to the same other machine.  This could result in connections with the following parameters:

          Internet addresses          TCP ports
  connection 1 128.6.4.194, 128.6.4.7   1234, 21
  connection 2 128.6.4.194, 128.6.4.7   1235, 21

Since the same machines are involved, the Internet addresses are the same.  Since they are both doing file
transfers, one end of the connection involves the well-known port number for FTP.  The only thing that
differs is the port number for the program that the users are running. That's enough of a difference.
Generally, at least one end of the connection asks the network software to assign it a port number that is
guaranteed to be unique.  Normally, it's the user's end, since the server has to use a well-known number.

Now that we know how to open connections, let's get back to the applications programs. As mentioned
earlier, once TCP has opened a connection, we have something that might as well be a simple wire. All
the hard parts are handled by TCP and IP. However we still need some agreement as to what we send
over this connection. In effect this is simply an agreement on what set of commands the application will
understand, and the format in which they are to be sent. Generally, what is sent is a combination of
commands and data.  They use context to differentiate. For example, the mail protocol works like this:
Your mail program opens a connection to the mail server at the other end. Your program gives it your
machine's name, the sender of the message, and the recipients you want it sent to. It then sends a
command saying that it is starting the message. At that point, the other end stops treating what it sees as
commands, and starts accepting the message. Your end then starts sending the text of the message. At the
end of the message, a special mark is sent (a dot in the first column). After that, both ends understand that
your program is again sending commands. This is the simplest way to do things, and the one that most
applications use.
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File transfer is somewhat more complex. The file transfer protocol involves two different connections. It
starts out just like mail. The user's program sends commands like "log me in as this user", "here is my
password", "send me the file with this name". However once the command to send data is sent, a second
connection is opened for the data itself. It would certainly be possible to send the data on the same
connection, as mail does. However file transfers often take a long time. The designers of the file transfer
protocol wanted to allow the user to continue issuing commands while the transfer is going on. For
example, the user might make an inquiry, or he might abort the transfer.  Thus the designers felt it was
best to use a separate connection for the data and leave the original command connection for commands.
(It is also possible to open command connections to two different computers, and tell them to send a file
from one to the other. In that case, the data couldn't go over the command connection.)

Remote terminal connections use another mechanism still.  For remote logins, there is just one
connection. It normally sends data. When it is necessary to send a command (e.g. to set the terminal type
or to change some mode), a special character is used to indicate that the next character is a command. If
the user happens to type that special character as data, two of them are sent.

We are not going to describe the application protocols in detail in this document. It's better to read the
RFC's yourself. However there are a couple of common conventions used by applications that will be
described here. First, the common network representation: TCP/IP is intended to be usable on any
computer.  Unfortunately, not all computers agree on how data is represented. There are differences in
character codes (ASCII vs. EBCDIC), in end of line conventions (carriage return, line feed, or a
representation using counts), and in whether terminals expect characters to be sent individually or a line
at a time.  In order to allow computers of different kinds to communicate,  each  applications  protocol
defines a standard representation.  Note that TCP and IP do not care about the representation.  TCP
simply sends octets. However the programs at both ends have to agree on how the octets are to be
interpreted.  The RFC for each application specifies the standard representation for that application.
Normally it is "net ASCII".  This uses ASCII characters, with end of line denoted by a carriage return
followed by a line feed. For remote login, there is also a definition of a "standard terminal", which turns
out to be a half-duplex terminal with echoing happening on the local machine. Most applications also
make provisions for the two computers to agree on other representations that they may find more
convenient. For example, PDP-10's have 36-bit words.  There is a way that two PDP-10's can agree to
send a 36-bit binary file. Similarly, two systems that prefer full-duplex terminal conversations can agree
on that.  However each application has a standard representation, which every machine must support.

3.1 An example application: SMTP

In order to give a bit better idea what is involved in the application protocols, I'm going to show an
example of SMTP, which is the mail protocol. (SMTP is "simple mail transfer protocol.) We assume that
a computer called TOPAZ.RUTGERS.EDU wants to send the following message.

 Date: Sat, 27 Jun 87 13:26:31 EDT
 From: hedrick@topaz.rutgers.edu
 To: levy@red.rutgers.edu
 Subject: meeting

 Let's get together Monday at 1pm.

First, note that the format of the message itself is described by an Internet standard (RFC 822). The
standard specifies the fact that the message must be transmitted as net ASCII (i.e. it must be ASCII, with
carriage return/linefeed to delimit lines).  It also describes the general structure, as a group of header
lines, then a blank line, and then the body of the message. Finally, it describes the syntax of the header
lines in detail. Generally they consist of a keyword and then a value.
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Note that the addressee is indicated  as  LEVY@RED.RUTGERS.EDU. Initially, addresses were simply
"person at machine". However recent standards have made things more flexible. There are now
provisions for systems to handle other systems' mail. This can allow automatic forwarding on behalf of
computers not connected to the Internet.  It can be used to direct mail for a number of systems to one
central mail server. Indeed there is no requirement that an actual computer by the name of
RED.RUTGERS.EDU even exist. The name servers could be set up so that you mail to department
names, and each department's mail is routed automatically to an appropriate computer. It is also possible
that the part before the @ is something other than a user name. It is possible for programs to be set up to
process mail. There are also provisions to handle mailing lists, and generic names such as "postmaster" or
"operator".

The way the message is to be sent to another system is described by RFC's 821 and 974. The program
that is going to be doing the sending asks the name server several queries to determine where to route the
message. The first query is to find out which machines handle mail for the name RED.RUTGERS.EDU.
In this case, the server replies that RED.RUTGERS.EDU handles its own mail. The program then asks
for the address of RED.RUTGERS.EDU, which is 128.6.4.2. Then the mail program opens a TCP
connection to port 25 on 128.6.4.2.  Port 25 is the well-known socket used for receiving mail. Once this
connection is established, the mail program starts sending commands.  Here is a typical conversation.
Each line is labelled as to whether it is from TOPAZ or RED. Note that TOPAZ initiated the connection:

  RED  220 RED.RUTGERS.EDU SMTP Service at 29 Jun 87 05:17:18 EDT
  TOPAZ HELO topaz.rutgers.edu
  RED  250 RED.RUTGERS.EDU - Hello, TOPAZ.RUTGERS.EDU
  TOPAZ MAIL From:<hedrick@topaz.rutgers.edu>
  RED  250 MAIL accepted
  TOPAZ RCPT To:<levy@red.rutgers.edu>
  RED  250 Recipient accepted
  TOPAZ DATA
  RED  354 Start mail input; end with <CRLF>.<CRLF>
  TOPAZ Date: Sat, 27 Jun 87 13:26:31 EDT
  TOPAZ From: hedrick@topaz.rutgers.edu
  TOPAZ To: levy@red.rutgers.edu
  TOPAZ Subject: meeting
  TOPAZ
  TOPAZ Let's get together Monday at 1pm.
  TOPAZ .
  RED  250 OK
  TOPAZ QUIT
  RED  221 RED.RUTGERS.EDU Service closing transmission channel

First, note that commands all use normal text. This is typical of the Internet standards.  Many of the
protocols use standard ASCII commands. This makes it easy to watch what is going on and to diagnose
problems. For example, the mail program keeps a log of each conversation. If something goes wrong, the
log file can simply be mailed to the postmaster. Since it is normal text, he can see what was going on. It
also allows a human to interact directly with the mail server, for testing. (Some newer protocols are
complex enough that this is not practical. The commands would have to have a syntax that would require
a significant parser. Thus there is a tendency for newer protocols to use binary formats. Generally they
are structured like C or Pascal record structures.) Second, note that the responses all begin with numbers.
This is also typical of Internet protocols. The allowable responses are defined in the protocol. The
numbers allow the user program to respond unambiguously.  The rest of the response is text, which is
normally for use by any human who may be watching or looking at a log. It has no effect on the
operation of the programs. (However there is one point at which the protocol uses part of the text of the
response.)  The commands themselves simply allow the mail program on one end to tell the mail server
the information it needs to know in order to deliver the message. In this case, the mail server could get
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the information by looking at the message itself. But for more complex cases, that would not be safe.
Every session must begin with a HELO, which gives the name of the system that initiated the connection.
Then the sender and recipients are specified. (There can be more than one RCPT command, if there are
several recipients.) Finally the data itself is sent. Note that the text of the message is terminated by a line
containing just a period. (If such a line appears in the message, the period is doubled.) After the message
is accepted, the sender can send another message, or terminate the session as in the example above.

Generally, there is a pattern to the response numbers.  The protocol defines the specific set of responses
that can be sent as answers to any given command. However programs that don't want to analyze them in
detail can just look at the first digit. In general, responses that begin with a 2 indicate success.  Those that
begin with 3 indicate that some further action is needed, as shown above. 4 and 5 indicate errors. 4 is a
"temporary" error, such as a disk filling. The message should be saved, and tried again later. 5 is a
permanent error, such as a non-existent recipient.  The message should be returned to the sender with an
error message.

(For more details about the protocols mentioned in this section, see RFC's 821/822 for mail, RFC 959 for
file transfer, and RFC's 854/855 for remote logins. For the well-known port numbers, see the current
edition of Assigned Numbers, and possibly RFC 814.)

4. Protocols other than TCP: UDP and ICMP

So far, we have described only connections that use TCP. Recall that TCP is responsible for breaking up
messages into datagrams, and reassembling them properly. However in many applications, we have
messages that will always fit in a single datagram. An example is name lookup. When a user attempts to
make a connection to another system, he will generally specify the system by name, rather than Internet
address. His system has to translate that name to an address before it can do anything. Generally, only a
few systems have the database used to translate names to addresses. So the user's system will want to
send a query to one of the systems that has the database. This query is going to be very short. It will
certainly fit in one datagram.  So will the answer. Thus it seems silly to use TCP. Of course TCP does
more than just break things up into datagrams.  It also makes sure that the data arrives, resending
datagrams where necessary. But for a question that fits in a single datagram, we don't need all the
complexity of TCP to do this. If we don't get an answer after a few seconds, we can just ask again.  For
applications like this, there are alternatives to TCP.

The most common alternative is UDP ("user datagram protocol"). UDP is designed for applications
where you don't need to put sequences of datagrams together. It fits into the system much like TCP.
There is a UDP header. The network software puts the UDP header on the front of your data, just as it
would put a TCP header on the front of your data. Then UDP sends the data to IP, which adds the IP
header, putting UDP's protocol number in the protocol field instead of TCP's protocol number. However
UDP doesn't do as much as TCP does.  It doesn't split data into multiple datagrams. It doesn't keep track
of what it has sent so it can resend if necessary. About all that UDP provides is port numbers, so that
several programs can use UDP at once. UDP port numbers are used just like TCP port numbers.  There
are well-known port numbers for servers that use UDP. Note that the UDP header is shorter than a TCP
header.  It still has source and destination port numbers, and a checksum, but that's about it. No sequence
number, since it is not needed. UDP is used by the protocols that handle name lookups (see IEN 116,
RFC 882, and RFC 883), and a number of similar protocols.

Another alternative protocol is ICMP ("Internet control message protocol").  ICMP is used for error
messages, and other messages intended for the TCP/IP software itself, rather than any particular user
program. For example, if you attempt to connect to a host, your system may get back an ICMP message
saying "host unreachable".  ICMP can also be used to find out some information about the network. See
RFC 792 for details of ICMP. ICMP is similar to UDP, in that it handles messages that fit in one
datagram. However it is even simpler than UDP. It doesn't even have port numbers in its header. Since all
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ICMP messages are interpreted by the network software itself, no port numbers are needed to say where a
ICMP message is supposed to go.

5. Keeping track of names and information: the domain system

As we indicated earlier, the network software generally needs a 32-bit Internet address in order to open a
connection or send a datagram. However users prefer to deal with computer names rather than numbers.
Thus there is a database that allows the software to look up a name and find the corresponding number.
When the Internet was small, this was easy. Each system would have a file that listed all of the other
systems, giving both their name and number. There are now too many computers for this approach to be
practical. Thus these files have been replaced by a set of name servers that keep track of host names and
the corresponding Internet addresses. (In fact these servers are somewhat more general than that. This is
just one kind of information stored in the domain system.) Note that a set of interlocking servers are used,
rather than a single central one. There are now so many different institutions connected to the Internet
that it would be impractical for them to notify a central authority whenever they installed or moved a
computer. Thus naming authority is delegated to individual institutions. The name servers form a tree,
corresponding to institutional structure.  The names themselves follow a similar structure. A typical
example is the name BORAX.LCS.MIT.EDU. This is a computer at the Laboratory for Computer
Science (LCS) at MIT. In order to find its Internet address, you might potentially have to consult 4
different servers. First, you would ask a central server (called the root) where the EDU server is. EDU is
a server that keeps track of educational institutions. The root server would give you the names and
Internet addresses of several servers for EDU.  (There are several servers at each level, to allow for the
possibly that one might be down.)  You would then ask EDU where the server for  MIT  is.  Again,  it
would  give  you  names  and Internet addresses of several servers for MIT.  Generally, not all of those
servers would be at MIT, to  allow for the possibility of a general power failure at MIT.  Then you would
ask MIT where the server for LCS is, and finally  you  would ask one of the LCS servers about BORAX.
The final result would be the Internet address for BORAX.LCS.MIT.EDU.    Each  of  these  levels  is
referred  to  as  a  "domain".  The entire name, BORAX.LCS.MIT.EDU, is called a "domain name".
(So  are  the  names  of  the  higher-level domains, such as LCS.MIT.EDU, MIT.EDU, and EDU.)

Fortunately,  you  don't really have to go through all of this most of the time.  First of all, the root name
servers also happen to  be  the name  servers  for  the  top-level domains such as EDU.  Thus a single
query to a root  server  will  get  you  to  MIT.    Second,  software generally  remembers answers that it
got before.  So once we look up a name at LCS.MIT.EDU, our software remembers where to find servers
for LCS.MIT.EDU,  MIT.EDU,  and EDU.  It also remembers the translation of BORAX.LCS.MIT.EDU.
Each of these pieces of information has a "time to live"  associated with it.  Typically this is a few days.
After that, the information expires and has to be looked up again.    This  allows institutions to change
things.

The  domain  system  is not limited to finding out Internet addresses.  Each domain name is a node in a
database.  The node can  have  records that  define  a number of different properties.  Examples are
Internet address, computer type, and a list of services provided by a computer.  A  program  can  ask  for
a  specific  piece  of  information, or all information about a given name.  It is possible  for  a  node  in
the database  to  be  marked as an "alias" (or nickname) for another node.  It is also possible to use the
domain  system  to  store  information about users, mailing lists, or other objects.

There  is  an  Internet  standard  defining  the  operation  of  these databases, as well as the protocols used
to  make  queries  of  them.  Every  network utility has to be able to make such queries, since this is now
the official way to evaluate host names.   Generally  utilities will talk to a server on their own system.
This server will take care of contacting the other servers for them.  This keeps down the  amount of code
that has to be in each application program.
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The  domain  system  is  particularly  important for handling computer mail.  There are entry types to
define what computer handles mail  for a  given  name, to specify where an individual is to receive mail,
and to define mailing lists.

(See RFC's 882, 883, and 973 for specifications of the domain  system.  RFC 974 defines the use of the
domain system in sending mail.)

6. Routing

The   description  above  indicated  that  the  IP  implementation  is responsible for getting datagrams to
the destination indicated by  the destination address, but little was said about how this would be done.
The task of finding how to  get  a  datagram  to  its  destination  is referred to as "routing".  In fact many
of the details depend upon the particular implementation.  However some general things can be said.

First, it is necessary to understand the model on which IP  is  based.  IP assumes that a system is attached
to some local network.  We assume that the system can send datagrams to any  other  system  on  its  own
network.    (In  the  case  of  Ethernet, it simply finds the Ethernet address of the destination system, and
puts the datagram  out  on  the Ethernet.)    The  problem  comes  when  a  system  is asked to send a
datagram to a system on a different network.  This problem is  handled by  gateways.   A gateway is a
system that connects a network with one or more other networks.  Gateways  are  often  normal
computers  that happen  to have more than one network interface.  For example, we have a Unix machine
that has two different Ethernet interfaces.  Thus it is connected  to networks 128.6.4 and 128.6.3.  This
machine can act as a gateway between those two networks.  The software on that machine must be  set
up  so that it will forward datagrams from one network to the other.  That is, if a machine on network
128.6.4 sends a  datagram  to the  gateway,  and  the  datagram is addressed to a machine on network
128.6.3, the gateway will forward the  datagram  to  the  destination. Major communications centers often
have gateways that connect a number of different  networks.    (In  many  cases,  special-purpose
gateway systems provide better performance or reliability than general-purpose systems acting as
gateways.  A number of vendors sell such systems.)

Routing in IP is  based  entirely  upon  the  network  number  of  the destination  address.    Each
computer has a table of network numbers.  For each network number, a gateway is listed.  This is the
gateway  to be used to get to that network.  Note that the gateway doesn't have to connect directly to the
network.  It just has to be the best place  to go  to  get there.  For example at Rutgers, our interface to
NSFnet is at the John von Neuman Supercomputer Center (JvNC). Our connection  to JvNC  is  via  a
high-speed  serial line connected to a gateway whose address is 128.6.3.12.  Systems on net 128.6.3 will
list 128.6.3.12 as the  gateway  for  many  off-campus  networks.  However systems on net 128.6.4 will
list 128.6.4.1 as the gateway to  those  same  off-campus networks.    128.6.4.1  is  the  gateway  between
networks 128.6.4 and 128.6.3, so it is the first step in getting to JvNC.

When a computer wants to send a datagram, it first checks  to  see  if the  destination address is on the
system's own local network.  If so, the datagram can be sent directly.  Otherwise, the system  expects  to
find an entry for the network that the destination address is on.  The datagram is sent to the gateway
listed in that entry.  This table  can get quite big.  For example, the Internet now includes several hundred
individual networks.  Thus various strategies have been  developed  to reduce  the size of the routing
table.  One strategy is to depend upon "default routes".  Often, there is only one gateway out of a
network.

This  gateway might connect a local Ethernet to a campus-wide backbone network.  In that case, we don't
need to have  a  separate  entry  for every  network  in  the  world.    We  simply define that gateway as a
"default".  When no specific  route  is  found  for  a  datagram,  the datagram  is  sent to the default
gateway.  A default gateway can even be used when there are several gateways  on  a  network.    There
are provisions  for  gateways  to  send a message saying "I'm not the best gateway -- use this one instead."
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(The message is sent via ICMP.  See RFC  792.)  Most network software is designed to use these
messages to add entries to their routing tables.  Suppose network 128.6.4 has  two gateways, 128.6.4.59
and 128.6.4.1.  128.6.4.59 leads to several other internal Rutgers networks.  128.6.4.1 leads indirectly to
the  NSFnet.  Suppose  we  set  128.6.4.59  as  a default gateway, and have no other routing table entries.
Now what  happens  when  we  need  to  send  a datagram  to  MIT?    MIT  is  network 18.  Since we
have no entry for network 18, the datagram will be sent to the default, 128.6.4.59.   As it  happens,  this
gateway  is the wrong one.  So it will forward the datagram to 128.6.4.1.  But it will also send back an
error saying  in effect: "to get to network 18, use 128.6.4.1".  Our software will then add an entry to the
routing table.  Any future datagrams to  MIT  will then  go  directly to 128.6.4.1.  (The error message is
sent using the ICMP protocol.  The message type is called "ICMP redirect.")

Most IP experts recommend that individual computers should not try  to keep  track  of  the  entire
network.  Instead, they should start with default gateways, and let the gateways tell them the routes,  as
just described.   However this doesn't say how the gateways should find out about the routes.  The
gateways can't depend upon this strategy.  They have  to  have fairly complete routing tables.  For this,
some sort of routing protocol is needed.  A routing protocol is simply a  technique for  the  gateways  to
find each other, and keep up to date about the best way to get to every network.   RFC  1009  contains  a
review  of gateway  design  and  routing.    However rip.doc is probably a better introduction to the
subject.  It contains some tutorial material,  and a detailed description of the most commonly-used
routing protocol.

7. Details about Internet addresses: subnets and broadcasting

As  indicated earlier, Internet addresses are 32-bit numbers, normally written as 4 octets (in decimal), e.g.
128.6.4.7.  There are  actually 3  different types of address.  The problem is that the address has to
indicate both the network and the host within the  network.    It  was felt  that  eventually  there would be
lots of networks.  Many of them would be small, but probably 24 bits would be needed to represent  all
the  IP  networks.  It was also felt that some very big networks might need 24 bits to represent all of their
hosts.  This would seem to lead to  48  bit  addresses.  But the designers really wanted to use 32 bit
addresses.  So they adopted a kludge.  The assumption is that most  of the  networks will be small.  So
they set up three different ranges of address.  Addresses beginning with 1 to 126 use only the  first  octet
for  the network number.  The other three octets are available for the host number.  Thus 24 bits are
available for hosts.  These numbers are used  for large networks.  But there can only be 126 of these very
big networks.  The Arpanet is one, and there are a  few  large  commercial networks.    But  few  normal
organizations get one of these "class A" addresses.  For normal large organizations, "class  B"  addresses
are used.    Class  B  addresses  use the first two octets for the network number.  Thus network numbers
are 128.1 through 191.254.  (We avoid  0 and  255,  for  reasons  that  we  see below.  We also avoid
addresses beginning with 127, because that is used by some systems  for  special purposes.)    The  last
two  octets  are available for host addesses, giving 16 bits of host address.   This  allows  for  64516
computers, which should be enough for most organizations.  (It is possible to get more than one class B
address, if you run  out.)    Finally,  class  C addresses  use  three  octets,  in  the  range 192.1.1 to
223.254.254.  These allow only 254 hosts on each network, but there can be  lots  of these  networks.
Addresses above 223 are reserved for future use, as class D and E (which are currently not defined).

Many large organizations find it convenient to  divide  their  network number into "subnets".  For
example, Rutgers has been assigned a class B address, 128.6.  We find it convenient to use the third octet
of the address to indicate which Ethernet a host is on.  This division has no significance outside of
Rutgers.  A computer  at  another  institution would treat all datagrams addressed to 128.6 the same way.
They would not look at the third octet of the address.   Thus  computers  outside Rutgers  would  not have
different routes for 128.6.4 or 128.6.5.  But inside Rutgers, we treat 128.6.4 and 128.6.5 as separate
networks.  In effect, gateways inside Rutgers have separate entries for each Rutgers subnet, whereas
gateways outside  Rutgers  just  have  one  entry  for 128.6.  Note  that  we  could  do  exactly  the  same
thing by using a separate class C address for each Ethernet.   As  far  as  Rutgers  is concerned,  it  would
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be just as convenient for us to have a number of class C addresses.  However using class C addresses
would make  things inconvenient for the rest of the world.  Every institution that wanted to talk to us
would have to have a separate entry for each one of  our networks.   If every institution did this, there
would be far too many networks for any reasonable gateway to keep track of.  By  subdividing a  class B
network, we hide our internal structure from everyone else, and  save  them  trouble.    This  subnet
strategy  requires  special provisions in the network software.  It is described in RFC 950.

0  and  255  have  special  meanings.  0 is reserved for machines that don't know their address.  In certain
circumstances it is possible for a  machine not to know the number of the network it is on, or even its
own host address.  For example, 0.0.0.23 would be a machine that  knew it was host number 23, but
didn't know on what network.

255  is  used for "broadcast".  A broadcast is a message that you want every system on the network to see.
Broadcasts  are  used  in  some situations  where you don't know who to talk to.  For example, suppose
you need to look  up  a  host  name  and  get  its  Internet  address.  Sometimes  you  don't know the
address of the nearest name server.  In that case, you might send the request as a broadcast.  There are
also cases  where a number of systems are interested in information.  It is then less expensive to send a
single broadcast than to send  datagrams individually  to  each host that is interested in the information.
In order to send a broadcast, you use an address that is  made  by  using your  network  address, with all
ones in the part of the address where the host number goes.  For example, if you are on network 128.6.4,
you would   use   128.6.4.255  for  broadcasts.    How  this  is  actually implemented depends upon the
medium.   It  is  not  possible  to  send broadcasts  on the Arpanet, or on point to point lines.  However it
is possible on an Ethernet.  If you use an Ethernet address with all  its bits  on (all ones), every machine
on the Ethernet is supposed to look at that datagram.

Although the official broadcast address for  network  128.6.4  is  now 128.6.4.255,  there  are  some
other addresses that may be treated as broadcasts by certain implementations.  For convenience, the
standard also  allows  255.255.255.255 to be used.  This refers to all hosts on the local network.  It is
often simpler to use 255.255.255.255 instead of  finding out the network number for the local network
and forming a broadcast address such as 128.6.4.255.   In  addition,  certain  older implementations  may
use  0  instead  of  255  to  form the broadcast address.    Such  implementations  would  use  128.6.4.0
instead   of 128.6.4.255  as  the  broadcast  address on network 128.6.4.  Finally, certain older
implementations may not understand about subnets.   Thus they consider the network number to be 128.6.
In that case, they will assume a broadcast address  of  128.6.255.255  or  128.6.0.0.    Until support  for
broadcasts is implemented properly, it can be a somewhat dangerous feature to use.

Because 0 and 255 are used for unknown and broadcast addresses, normal hosts  should never be given
addresses containing 0 or 255.  Addresses should never begin with 0, 127, or any number above  223.
Addresses violating these rules are sometimes referred to as "Martians", because of rumors that the
Central University of Mars is using network 225.

8. Datagram fragmentation and reassembly

TCP/IP is designed for use  with  many  different  kinds  of  network.  Unfortunately,  network  designers
do not agree about how big packets can be.  Ethernet packets can be 1500 octets long.    Arpanet  packets
have  a  maximum  of around 1000 octets.  Some very fast networks have much larger packet sizes.  At
first, you might think  that  IP  should simply  settle  on  the  smallest  possible size.  Unfortunately, this
would cause serious performance problems.    When  transferring  large files, big packets are far more
efficient than small ones.  So we want to be able to use the largest packet size possible.  But we also
want to  be  able  to  handle  networks  with  small limits.  There are two provisions for this.  First, TCP
has the ability to "negotiate"  about datagram  size.  When a TCP connection first opens, both ends can
send the maximum datagram size they can  handle.    The  smaller  of  these numbers  is  used  for  the
rest  of the connection.  This allows two implementations that can handle big datagrams to use  them,  but
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also lets  them  talk  to  implementations that can't handle them.  However this doesn't completely solve
the problem.  The most  serious  problem is  that the two ends don't necessarily know about all of the
steps in between.  For example, when sending data between Rutgers and Berkeley, it is likely that both
computers will be on Ethernets.  Thus they will both  be  prepared  to  handle  1500-octet  datagrams.
However  the connection will at some point end up going over the Arpanet.  It can't handle packets of
that size.  For this reason, there are provisions to split   datagrams   up   into   pieces.    (This  is  referred
to  as "fragmentation".)  The IP header  contains  fields  indicating  the  a datagram  has  been split, and
enough information to let the pieces be put back together.  If a gateway connects an Ethernet to the
Arpanet, it must be prepared to take 1500-octet Ethernet packets and split them into pieces that will fit on
the Arpanet.    Furthermore,  every  host implementation  of  TCP/IP  must  be prepared to accept pieces
and put them back together.  This is referred to as "reassembly".

TCP/IP implementations differ in the approach they take to deciding on datagram  size.    It  is  fairly
common  for  implementations to use 576-byte datagrams whenever they can't verify that the entire path
is able  to  handle larger packets.  This rather conservative strategy is used because of the number of
implementations with bugs in the code to reassemble  fragments.    Implementors  often try to avoid ever
having fragmentation occur.  Different implementors take different approaches to  deciding  when  it  is
safe to use large datagrams.  Some use them only for the local network.  Others will use them for any
network  on the   same   campus.    576  bytes  is  a  "safe"  size,  which  every implementation must
support.

9. Ethernet encapsulation: ARP

There was a brief discussion earlier about what IP datagrams look like on  an  Ethernet.    The  discussion
showed  the  Ethernet header and checksum.  However it left one hole: It didn't say how to  figure  out
what Ethernet address to use when you want to talk to a given Internet address.  In fact, there is a
separate protocol for this,  called  ARP ("address  resolution protocol").  (Note by the way that ARP is not
an IP protocol.  That is, the ARP datagrams  do  not  have  IP  headers.)  Suppose  you  are  on  system
128.6.4.194  and you want to connect to system 128.6.4.7.  Your system will first verify that 128.6.4.7 is
on the  same network, so it can talk directly via Ethernet.  Then it will look up 128.6.4.7 in its ARP table,
to see if  it  already  knows  the Ethernet  address.    If  so, it will stick on an Ethernet header, and send
the packet.  But suppose this system is not  in  the  ARP  table.  There  is  no  way  to  send the packet,
because you need the Ethernet address.  So it  uses  the  ARP  protocol  to  send  an  ARP  request.
Essentially  an  ARP  request  says  "I  need the Ethernet address for 128.6.4.7".  Every system listens to
ARP requests.  When a system sees an  ARP  request  for itself, it is required to respond.  So 128.6.4.7
will see the request, and will respond with an  ARP  reply  saying  in  effect "128.6.4.7 is 8:0:20:1:56:34".
(Recall that Ethernet addresses are 48 bits.  This is 6 octets.  Ethernet addresses are conventionally shown
in  hex,  using  the punctuation shown.)  Your system will save this information in its ARP table, so
future packets will go directly.  Most  systems  treat the ARP table as a cache, and clear entries in it if
they have not been used in a certain period of time.

Note by the way that ARP requests must be sent as "broadcasts".  There is  no  way  that  an  ARP
request  can be sent directly to the right system.  After all, the whole reason for sending  an  ARP  request
is that  you  don't know the Ethernet address.  So an Ethernet address of all ones is  used,  i.e.
ff:ff:ff:ff:ff:ff.    By  convention,  every machine  on  the Ethernet is required to pay attention to packets
with this as an address.  So every system sees every ARP  requests.    They all  look to see whether the
request is for their own address.  If so, they respond.  If not, they could just ignore it.   (Some  hosts  will
use  ARP  requests  to update their knowledge about other hosts on the network, even if the request isn't
for them.)  Note that packets whose IP  address  indicates broadcast (e.g. 255.255.255.255 or
128.6.4.255) are also sent with an Ethernet address that is all ones.

10. Getting more information
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This directory contains  documents  describing  the  major  protocols.  There  are literally hundreds of
documents, so we have chosen the ones that seem most important.  Internet standards are called RFC's.
RFC stands  for  Request  for  Comment.   A proposed standard is initially issued as a proposal, and given
an RFC number.   When  it  is  finally accepted,  it is added to Official Internet Protocols, but it is still
referred to by the RFC number.   We  have  also  included  two  IEN's.  (IEN's  used  to  be  a  separate
classification  for  more  informal documents.  This classification no longer exists -- RFC's are now used
for  all  official  Internet documents, and a mailing list is used for more informal reports.)  The
convention is that  whenever  an  RFC  is revised, the revised version gets a new number.  This is fine for
most purposes, but it causes problems with two documents: Assigned  Numbers and  Official  Internet
Protocols.  These documents are being revised all the time, so the RFC number keeps changing.  You will
have to look in rfc-index.txt to find the number of the latest edition.  Anyone who is seriously interested
in TCP/IP should read the  RFC  describing  IP (791).    RFC 1009 is also useful.  It is a specification for
gateways to be used by NSFnet.  As such, it contains an overview of  a  lot  of the  TCP/IP technology.
You should probably also read the description of at least one of the application protocols, just to get a
feel  for the  way  things  work.    Mail is probably a good one (821/822).  TCP (793) is of course a very
basic specification.  However  the  spec  is fairly  complex,  so  you should only read this when you have
the time and patience to think about it carefully.  Fortunately, the author  of the  major  RFC's  (Jon
Postel) is a very good writer.  The TCP RFC is far easier to read than you would expect, given the
complexity of what it  is  describing.    You  can  look at the other RFC's as you become curious about
their subject matter.

Here is a list of the documents you are more likely to want:

rfc-index list of all RFC's
rfc1065/6/7

Simple  Network Management Protocol (SNMP).  A protocol to get information from
gateways and hosts, to  monitor failures,   and   to  reconfigure  gateways  and  hosts
remotely.  This protocol will  be  the  foundation  for network  management  activities
involving TCP/IP.  RFC 1028 documents the Simple Gateway  Monitoring  Protocol
(SGMP),  which  is an interim protocol on which SNMP is based.  SGMP will be replaced
by SNMP during 1988/89.

rfc1064,1056,937
protocols for reading mail on PC's

rfc1062   Assigned  Numbers.
If you are working with TCP/IP, you will probably want a hardcopy of this as  a  reference.
It's  not  very exciting to read, but is essential.  It lists all the offically defined  well-known
ports  and lots of other things.

rfc1059   Network  Time  Protocol.
A protocol for synchronizing the time on all your machines.  Also allows you to  get time
from one of the national time standards.

rfc1058   Routing  Information  Protocol.
Details of the most commonly-used routing protocol.

rfc1057   RPC.
A protocol for remote  procedure  calls.    Sun's Network  File  System is based on this.  The
actual NFS protocol specification is currently available only from Sun.  Sun  supplies a
public domain implementation of RPC.  Aside from its use by NFS  (whose  implementation
is not public domain), RPC has been used by a number of groups  for  building  server/client
systems  such  as remote database servers.  See also RFC 1014.

rfc1042   IP  encapsulation  for IEEE 802 networks.
This will be used for the IEEE  token  ring,  broadband,  etc.    In principle  it  seems  that
this  would cover Ethernet, since  Ethernet  is  IEEE  802.3.  However  the  normal
encapsulation used on Ethernet is defined by RFC 894.

rfc1032/3/4/5 domains
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(the database used to go  from  host  names  to Internet  address  and back -- also used to
handle UUCP these days).  This includes protocol standards, as well as information directed
at people who are going to have to set up a domain name server.  Every site should have a
copy of these documents.

rfc1014   XDR:  External  Data  Representation Standard.
This is part of the specifications for Sun's RPC protocol  (RFC 1057),  which  is the protocol
underlying Sun's Network File System.

rfc1013   X Window System Protocol, Version 11.
Documents  the most commonly used remote window system.

rfc1012   list  of  all  RFC's  below  1000
with  somewhat more  information than rfc-index.

rfc1011   Official Protocols.
It's useful to scan  this  to  see what tasks protocols have been built for.  This defines which
RFC's  are  actual  standards,  as opposed to requests for comments.

rfc1009   NSFnet  gateway  specifications.
A good overview of IP routing and gateway technology.

rfc1001/2 netBIOS
networking for PC's

rfc959    FTP (file transfer)
rfc950    subnets
rfc894    how IP is to be put on Ethernet, see also rfc825
rfc854/5  telnet - protocol for remote logins
rfc826    ARP - protocol for finding out Ethernet addresses
rfc821/2  mail
rfc814    names and ports - general  concepts  behind  well-known ports
rfc793    TCP
rfc792    ICMP
rfc791    IP
rfc768    UDP
ien-116   old  name  server  (still  needed  by  several kinds of system)
ien-48    the  Catenet  model,   general   description   of   the philosophy behind TCP/IP

The following documents are somewhat more specialized.
rfc1055   SLIP (IP for dialup lines)
rfc1054   IP multicasting
rfc1048   Bootp,  a protocol often used to allow diskless systems to find their IP address.
rfc813    window and acknowledgement strategies in TCP
rfc815    datagram reassembly techniques
rfc816    fault isolation and resolution techniques
rfc817    modularity and efficiency in implementation
rfc879    the maximum segment size option in TCP
rfc896    congestion control
rfc827,888,904,975,985  EGP and related issues

To  those  of you who may be reading this document remotely instead of at Rutgers: The most  important
RFC's  have  been  collected  into  a three-volume set, the DDN Protocol Handbook.  It is available from
the DDN Network Information  Center,  SRI  International,  333  Ravenswood Avenue,  Menlo  Park,
California 94025 (telephone: 800-235-3155).  You should be able to get them via anonymous FTP from
sri-nic.arpa.   File names are:
  RFC's:
    rfc:rfc-index.txt
    rfc:rfcxxx.txt
  IEN's:
    ien:ien-index.txt
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    ien:ien-xxx.txt

Sites with access to UUCP but not FTP may be able to retreive them via UUCP from UUCP host rutgers.
The file names would be
  RFC's:
    /topaz/pub/pub/tcp-ip-docs/rfc-index.txt
    /topaz/pub/pub/tcp-ip-docs/rfcxxx.txt
  IEN's:
    /topaz/pub/pub/tcp-ip-docs/ien-index.txt
    /topaz/pub/pub/tcp-ip-docs/ien-xxx.txt

Note that SRI-NIC has the entire set of RFC's and IEN's,  but  rutgers and topaz have only those
specifically mentioned above.
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