
Jini™ Device Architecture
Specification
d the

 of the

ither
ing
tween
The Jini ™ technology is a Java™ platform-centric distributed system designed aroun
goals of simplicity, flexibility, and federation. The Jini architecture allows a group of
machines or programs to enter into a federation, offering resources to other members
federation and using resources as needed. These resources appear to the client of the
resource as an object in the Java programming language, but can be implemented in e
software or hardware. This document discusses some alternative ways of accomplish
such implementations in hardware, showing some of the tradoffs that can be made be
functionality and device complexity.
901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300
fax 415 969-9131

Revision 1.0
January 25, 1999

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. has patent and other intellectual property rights relating to implementations
of the technology described in this Specification ("Sun IPR"). Your limited right to use this
Specification does not grant you any right or license to Sun IPR. A limited license to Sun IPR is
available from Sun under a separate Community Source License.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A RESULT OF
USING THE SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
SPECIFICATIONS AT ANY TIME, IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION
TO PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY BASED UPON THE SPECIFICATION. NOR IS SUN UNDER ANY OBLIGATION
TO LICENSE THE SPECIFICATION OR ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE
FUTURE, FOR PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Jini, JavaSpaces, JavaSoft, JavaBeans, JDK, Java, HotJava,
HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS,
EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop,
the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
Page ii Jini™ Device Architecture Specification—1.0

Contents
1. Introduction . 1

1.1 Requirements from the Jini Lookup Service 2

1.2 Comments . 4

2. Basic Device Architecture Examples . 5

2.1 Devices with Resident Java Virtual Machines 6

2.2 Devices Using Specialized Virtual Machines 8

2.3 Clustering Devices with a Shared Virtual Machine (physical

option) . 9

2.4 Clustering Devices with a Shared Virtual Machine (network

option) . 11

2.5 Jini Software Services over the Internet Inter-Operability

Protocol . 13
Page iii

Page iv Jini™ Device Architecture Specification–1.0

Introduction 1
The Jini technology infrastructure is built around the model of clients looking

for services. The notion of a service encompasses access to information,

computation, software that performs particular tasks, and in general any

component that helps a user accomplish some goal. Services can themselves be

clients of other services, and can be grouped together to provide higher-level

functionality.

The Jini architecture requires a service to be defined in terms of a data type for

the Java programming language, that can then be implemented in different

ways by different instances of the service. A service can be a member of many

different types, allowing a single service instance to provide a variety of

functionality to clients. This is a standard practice in object-oriented software.

However, the distributed nature of the Jini system allows data types for the

Java programming language to be implemented in a combination of software

and hardware in a way that is unique.

The core of the idea that enables this implementation flexibility is quite simple.

Services are defined via an interface, and the implementation of a proxy

supporting the interface that will be seen by the service client will be uploaded

into the lookup service by the service provider. This implementation is then

downloaded into the client as part of that client finding the service. This

service-specific implementation needs to be code written in the Java

programming language (to insure portability). However, since this code comes

from the actual instance of the service being used, it can know in great detail

the specifics of the particular service implementation for which it is the proxy.

Not only can the code that is downloaded know about the software used to
Page 1

1

implement the service, the code can know specifics about the hardware on

which the service resides. In the limit case of this, the hardware could be all

that there is to the service, and the downloaded software could act as a

network-level device driver, taking method calls in the Java programming

language from the client and generating specific, hard-coded requests to the

hardware on the other end of the network wire.

This approach to services requires that there be a piece of code written in the

Java programming language that can be downloaded by the client of the

service, and some hardware that ultimately runs the service. Between these

two points, however, there are a number of options concerning the software

structure, hardware structure, and location of components that can be chosen

by the service provider. These options allow trade-offs to be made in the

functionality provided and the cost of the underlying hardware.

In what follows, we begin by discussing in more detail the requirements placed

on a service to be part of the Jini system. We then discuss some examples of

combinations of software and hardware that can be used to implement Jini-

capable services once the specialized implementations in hardware begin to

play a role.

1.1 Requirements from the Jini Lookup Service
The actual offering of a service places very few requirements on the entity

making the offer; indeed, it is possible to implement a device using Jini

software services that offers a service in such a way that the code written in the

Java programming language downloaded by the client transmits bit patterns to

the hardware that are directly interpreted. In such cases, the amount of

intelligence needed for a Jini device is minimal. The code written in the Java

programming language could talk directly to the device controller in much the

same way that the device would be talked to if it were on the local computer’s

bus (with, of course, some modifications for dealing with the network-centric

aspects of the communication).

Unfortunately, providing a service is only part of what is needed to be a Jini

service. To be part of a Jini system grouping, a service must also be able to

participate in the Jini Discovery protocol, and register itself into the local Jini

Lookup service. This is how a service makes itself known to the djinn, and how

the service is accessed by other members of the djinn.
Page 2 Jini™ Device Architecture Specification–1.0

1

These two requirements are intimately connected. The major goal of the Jini

Discovery protocol is to allow a device or service to obtain a Java Remote

Method Invocation (RMI) reference to the local Jini Lookup service. Once this

reference has been obtained, the service needs to register itself in that Jini

Lookup service, allowing other participants in the djinn to find and use the

service.

The interface to the Jini Lookup service is a full RMI interface, and the

implementation of that service uses all of the mechanisms of RMI, including

the distributed garbage collection and the dynamic downloading of code. As

such, there is an implicit assumption that the service that holds a reference to

the Jini Lookup service lives inside a full Java™ Virtual Machine (JVM), at least

capable of running the full RMI system.

This assumption is most evident if we consider the possibility of alternate

implementations of the Jini Lookup service, which might support remote

interfaces beyond that specified by the Jini Lookup service itself (currently the

interface net.jini.core.lookup.ServiceRegistrar). Such an

implementation would have a different RMI proxy than the current

implementation, which would be downloaded if the device had a full JVM and

RMI runtime. Devices without a full JVM and RMI runtime would need a

different way of dealing with such implementations of the service.

In addition to the need to download the stub code for the Jini Lookup service,

registering with the service requires the creation of an object of type

net.jini.core.lookup.ServiceItem , which is itself made up of a set of

objects in the Java programming language. Maintenance of these entries in the

Jini Lookup service can require the creation of other objects in the Java

programming language of the type net.jini.core.entry.Entry . All of

these objects are most easily constructed by using a running JVM.

Finally, registrations with the Jini Lookup service are leased, with the lease that

is returned requiring renewal for the service to continue to be shown in the

lookup service. The specification of the lookup service does not include a

specification of the lease object that is returned by a registration. All that is

specified is an interface written in the Java programming language that must

be supported by the (local) object that is returned as the lease. Thus the design

of the Jini Lookup service requires that the code that implements the class that

in turn implements the net.jini.core.lease.Lease interface be

downloaded into the service that registers so that the lease can be renewed.
Page 3

1

1.2 Comments
Please direct comments to jini-comments@java.sun.com .
Page 4 Jini™ Device Architecture Specification–1.0

Basic Device Architecture Examples 2
In this chapter, we will look at three different approaches for implementing a

Jini service in hardware. Each of the approaches will look the same to a client

of the service. Each approach takes a different route to interacting with the Jini

Lookup service and in providing an interface written in the Java programming

language to clients of that service. In each case, a different trade off was made

between the complexity of the device, the flexibility of the device, and the

directness of the communication between the client wanting to use the service

and the device that implements the service.

All but the first of the examples make use of interposition, that is, the ability of

a service to add a proxy between itself and the client of the service. This proxy

can be used by the service as an agent to the Jini technology infrastructure, off-

loading from the service some of the work needed to join the Jini system

federation.

The examples given in this chapter are not the only options open to the service

designer who wishes to produce a service that includes a hardware

component. Rather, the examples are meant to show some samples of the range

of implementation possibilities that are open to such designers. In effect, this

document is meant to show that, within the overall Jini architecture, there is no

single Jini device architecture. Instead, the device space is freed up allowing

different services to have hardware implementations with different price,

performance, functionality and flexibility design points.
Page 5

2

2.1 Devices with Resident Java Virtual Machines
An obvious design for a device that can become part of a Jini system federation

is one that includes the computing power, memory, and non-volatile store

necessary to have a full JVM and those parts of the Java application

environment necessary to support the Jini infrastructure (in particular, those

parts needed for code loading, RMI, and any required security). This would

make the device into a specialized computing entity, with part of the device

dedicated to the parts of the Java API required by the Jini architecture. On this

approach, the hardware implementation is abstracted behind a device-local

software abstraction, which in turn is abstracted behind the proxy code used

by the client to contact the service. This sort of architecture is shown in figure

3.1.

Such a device would be able to make full use of Jini and Java technology,

uploading code that is used to communicate with the device and downloading

code that might be needed for the service provided by the device. Such a

device can make use of the native RMI protocol for communication over the

Service Client Service Provider

Proxy

(Communication via RMI protocol)

Hardware
Implementation

Java VM

Private
Protocol

Network

Client

Figure 3.1
Page 6 Jini™ Device Architecture Specification–1.0

2

network, and has a loose tie between the communication protocol and the

particular software protocol governing the running of the device itself. On this

approach, the device becomes a specialized network appliance offering a

particular service (or set of services) via an embedded Java platform.

In effect, this approach uses a hardware implementation for the local

implementation of an RMI server, isolating the hardware behind two levels of

indirection. The first is that provided by the local proxy code that is uploaded

into the Jini Lookup service and then downloaded into the client of the service.

Additionally, the local JVM and code written in the Java programming

language resident on the service device allow mediation between the client

proxy and the hardware itself.

A device which took this approach could easily have multiple services

implemented on the device in a way that was mediated by the JVM on the

device. Further, such a device could be evolved with no impact on the client or

the network protocol used between the client and the service, since any change

in the hardware would only be seen by the JVM and any server-side code that

directly talked to the hardware.

While simple and flexible, this approach does add some cost to the device. In

particular, the device would need to have a microprocessor capable of running

the JVM, some memory in which to create and store classes, and some non-

volatile store (either disk or NVRAM) from which to load the JVM and Java™

Development Kit (JDK) software classes. All of these are in addition to the

hardware needed to implement the Jini service that the device provides. This

extra hardware will increase the cost of producing the device.

Meeting these requirements does not call for a hosted version of the JVM, or a

full version of the JDK running on the device. The JVM could run on any form

of micro-kernel or directly on the hardware of the device. Further, there are

large parts of the JDK that would not be required for the minimal device—such

things as the graphics and UI classes would not be needed, which form a

significant chunk of the current release. Other parts of that release could also

be dropped, allowing a “stripped down” JDK to suffice for Jini devices.It

would be worthwhile to determine the exact definition of such a subset of the

JDK and size that component; it would be something close to the definition of

embedded Java technology with the additional classes needed to support RMI.

What is important for this kind of approach is for the device to be able to

download any code written in the Java programming language (although

whether that code is run could depend on the local security manager), utilize
Page 7

2

the RMI communication system, and handle the requirements of a general

virtual machine. By presenting a standard JVM, the device gets full

membership in a Jini system federation and complete flexibility in the ways in

which the machine communicates between the proxy it provides other

members of the federation and the device itself.

2.2 Devices Using Specialized Virtual Machines
We can lower the barrier to entry for a device manufacturer if that

manufacturer is willing to give up some of the flexibility given by the Jini

distribution architecture. This can be done by allowing the device to become

part of a Jini system federation with a specialized virtual machine that is tuned

to allow only those operations needed by the Jini Discovery protocol and Jini

Lookup service.

To do this, the device manufacturer would need to implement the interfaces to

the Jini Discovery and Jini Lookup service in the device itself, include

specialized knowledge of the kind of leases that are handed out by the Jini

Lookup service and be able to renew those leases directly, and have sufficient

functionality to download and use the stubs for these services. This is a

particular set of functionalities that is considerably smaller than required by

the whole of the JVM, and should be capable of being implemented in much

less code. For example, such a JVM would not need to contain a security

manager, a code verifier, or a number of the other components that are

required for a full JVM.

Such a device would contain a JVM specialized for the Jini environment,

allowing the Jini Discovery and Jini Lookup services to be accessed and leases

of a particular sort to be renewed. This would limit the flexibility of such a

device, as the device would not be able to have software changes made over

time to the protocol used by the proxy for the device. The specialized

knowledge of the kind of lease that is handed out by the lookup service would

also tie such a device to a particular implementation of the lookup service.

However, this penalty in serviceability may not outweigh the simplicity of the

overall device.
Page 8 Jini™ Device Architecture Specification–1.0

2

2.3 Clustering Devices with a Shared Virtual Machine (physical option)
A third approach uses a full JVM, but amortizes the cost of the JVM (both

software and hardware) over a number of different devices. On this approach,

a group of devices each uses a physically co-located JVM as an intermediate

layer between the device and the Jini system grouping. The device loads code

written in the Java programming language into this local virtual machine

allowing that local machine to interact with the device, and then delegates to

the local JVM the requirements of interacting with the Jini Lookup service, Jini

Discovery, and Jini Leasing.

This approach is very much like the first one discussed in this section, except

that the JVM used by the devices is shared. It is still a full JVM, allowing the

downloading of code and complete Java platform functionality. However, the

most likely implementation of such a device would allow multiple (and

perhaps different) kinds of physical devices to be plugged into the overall

device to get the sharing of the Java application environment.

Such a device might best be thought of as a “Jini device bay.” This bay could

provide power, a network connection, and a processor running a JVM and

appropriate parts of the JDK. Physical devices used to provide a particular

kind of Jini service could be plugged into the device bay and announce

themselves to the bay in whatever way the two decided was appropriate. This

could be using a proprietary protocol (allowing a device manufacturer to

produce both the basic device or devices and the device bay) or some other

industry standard, local-device identification scheme.

As part of the local announcement, a new device would tell the device bay

where to find the code written in the Java programming language that is

needed by a client of the service, and (possibly) where to find code that would

allow the device bay to interact with the device. This allows devices to carry

their own “drivers” both for the local machine and at the network level.

Upon detection of the new local device, the Jini device bay would register the

services provided by the new device (previously known by the device bay)

with the Jini Lookup service. It would be the role of the device bay to renew

leases on the Jini Lookup service entries, and to detect removal any of the

devices for which it was acting as proxy. The device bay would provide the Jini

Lookup service with the code handed to it by the device so that service clients

could download that code.
Page 9

2

The client of the device service would believe that it is talking to the device

registered in the Jini Lookup service, but would actually be talking to the

device bay. The device bay would act as a dispatcher to the particular device

for which it was acting as a proxy, along with any translation of protocol

between the network protocol used by the service proxy and the protocol used

between the device bay and the actual device. Graphically, the architecture of

such an approach is shown in Figure 3.2.

The savings for the device manufacturer in this case comes from the ability of

multiple physical devices to share a device bay, which contains the intelligence,

memory, and perhaps other components (such as the power supply). By

sharing these resources among multiple devices, the extra cost and engineering

needed to interact with the Jini system federation can be amortized over a

large number of devices.

The cost of this approach to the device manufacturers is that the protocol

between the device acting as the Jini device bay and the devices that are placed

in that bay must be defined in advance and cannot change over time. Because

Service Client Service Providers

Proxy

(Communication via RMI protocol)

dev

Java VM

Network

Client

Figure 3.2

 2
dev
 1

dev
 3

Java
device
bay
Page 10 Jini™ Device Architecture Specification–1.0

2

there is no way of introducing dynamic behavior in the particular devices, the

pairing of device and Jini device bay must be controlled and known

beforehand.

It should be noted that the Jini device bay itself is a Jini device, which can be

thought of as providing services to those devices housed within it. As such, it

could be a revenue item in its own right. Variations in the implementation

could be provided to support various internal announcement protocols (device

bay, jetsend, etc.) or hardware busses (including “network”-like busses such as

firewire).

2.4 Clustering Devices with a Shared Virtual Machine (network option)
A variation on the device bay approach utilizes the network rather than a

physical enclosure and backplane. On this alternative, a proxy for the JVM

used by the various service devices would exist on the network. Service

devices could be added to the network, discover the existence of such a proxy

device, and register with that proxy. Such a registration could include the code

written in the Java programming language needed by a client of the device

(either directly or as a URL to use to obtain the code) and code needed by the

proxy to communicate with the service device.

When a service device registers with such a network proxy, the proxy device

would register with the Jini Lookup service on behalf of the service device,

thus allowing the service device to become a part of the Jini system federation.

Requests to the new service would go first to the proxy for that device, which

could then forward the requests (after appropriate protocol translation) to the
Page 11

2

particular service device. In addition, the proxy could handle the Jini-specific

tasks such as renewing leases for the service. This alternative is shown in

Figure 3.3.

This alternative requires somewhat more hardware for the individual device,

as it requires each service device using such a proxy to be able to be placed on

the network and have its own power supply and network connection.

However, the devices would not need individual CPUs, memory, or persistent

store; all of that would be provided by the networked Jini device proxy.

Devices using this option would need to have a protocol parallel to the Jini

Discovery protocol between the individual service devices and the network

proxy for those devices. This could be a specialized code on the network,

known in advance, that the devices can use to identify themselves to the

network proxy. This will have to be particular to the device and the proxy for

that device. However, once this protocol has been decided upon, no other

intelligence needs to be built into the device. All of the intelligence can be built

in to the network proxy, perhaps uploaded into the proxy by the service device

Service Client

Service Providers

Proxy

(Communication via RMI protocol)

dev

Java VM

Network

Client

Figure 3.3

 2
dev
 1

dev
 3

(private
 protocols)

Network Proxy
Page 12 Jini™ Device Architecture Specification–1.0

2

(which could easily carry code written in the Java programming language,

even though it cannot execute that code). The protocol that is used by the

network proxy to talk to the devices for which it is a proxy also needs to be

statically defined in advance, and cannot be changed. However, it can be any

protocol that is needed by the particular device.

On this approach, the individual devices will be more complex than they

would be on the Jini device bay approach. However, the number of devices

that can be serviced by a network available proxy is not limited by the physical

constraints of the proxy device. Nor is there any requirement that the devices

and the proxy device be co-located, which is a requirement on the physical

clustering scheme.

This is also the approach that can be taken to build “gateways” between the

Jini devices and other network-managed devices. Such devices, that already

speak a particular protocol, can be spliced into the Jini system federation by

providing a network proxy that speaks the Jini protocol on behalf of such

devices, and the existing specialized protocol to such devices. This is the

approach that can be used to add consumer electronic devices, factory controls,

or home environment controls into the Jini system grouping.

2.5 Jini Software Services over the Internet Inter-Operability Protocol
A final method for connecting devices or services that are not purely Java

software based into Jini federation centers on using the Object Management

Group (OMG)’s Internet Inter-Operability Protocol (IIOP). This protocol

defines a standard for data transmission that will be supported by a subset of

RMI.

This approach relies on the ability of a device to read an IIOP stream directly,

either because the device includes an implementation of a Common Object

Request Broker Architecture (CORBA) Object Request Broker (ORB), or

because the device knows what IIOP streams to expect and can interpret those

known-form streams directly.

This approach requires that the Jini Lookup service supplies implementations

of its interfaces over both the native RMI protocol and the IIOP protocol. This

is supported by RMI over IIOP as long as the interfaces conform to any

subsetting requirements established by the OMG. At the current time, it

appears that the Jini Lookup service interfaces are in conformance with the

RMI over IIOP subset.
Page 13

2

Devices that contain a CORBA ORB could directly interact with the Jini

Lookup service, using the IIOP protocol. The fact that the Jini Lookup service

generated this protocol via RMI would be transparent to the service itself, and

the fact that the service was using a method other than RMI to reply to the Jini

Lookup service (to renew leases, for example) would be transparent to the Jini

Lookup service. Current differences between the RMI programming model and

the CORBA programming model would need to be dealt with by the device

itself; for example, the device would not be able to download the

implementation of the stub for the Jini Lookup service, and would need an

implementation of the Jini Lease class used by the Jini Lookup service.

Devices that do not include a CORBA ORB could directly interpret the IIOP

stream and attempt to interact with the Jini Lookup service. This approach

requires very little software support on the side of the device (since the

bitsteam from the wire is being directly interpreted). However, it is an

approach that will only work with known versions of the Jini Lookup service

that exports known implementations of a Jini Lease. Any alteration of either

the Jini Lease implementation or the protocol used by the Jini Lookup service,

even those that would be invisible to other clients of the service, would make it

impossible for the device directly interpreting the IIOP protocol to interact

with the new version of the service. Hence this alternative, while lowest in cost

with respect to the hardware and software needed by the device, is also the

least reliable in the face of implementations that can change over time or which

are open to alternate implementations.
Page 14 Jini™ Device Architecture Specification–1.0

	Jini™ Device Architecture Specification
	The Jini ™ technology is a Java™ platform-centric ...
	Contents
	1. Introduction 1
	1.1 Requirements from the Jini Lookup Service 2
	1.2 Comments 4

	2. Basic Device Architecture Examples 5
	2.1 Devices with Resident Java Virtual Machines 6
	2.2 Devices Using Specialized Virtual Machines 8
	2.3 Clustering Devices with a Shared Virtual Machi...
	2.4 Clustering Devices with a Shared Virtual Machi...
	2.5 Jini Software Services over the Internet Inter...

	Introduction

	1.1 Requirements from the Jini Lookup Service
	1.2 Comments
	Basic Device Architecture Examples

	2.1 Devices with Resident Java Virtual Machines
	2.2 Devices Using Specialized Virtual Machines
	2.3 Clustering Devices with a Shared Virtual Machi...
	2.4 Clustering Devices with a Shared Virtual Machi...
	2.5 Jini Software Services over the Internet Inter...

